首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 64 毫秒
1.
配施有机肥提高化肥氮利用效率的微生物作用机制研究   总被引:26,自引:4,他引:26  
采用15N示踪技术和盆栽试验研究了水稻生长期间不同施肥处理土壤微生物量氮的动态变化,探讨了配施有机肥提高化肥氮利用率的微生物作用机制。结果表明,在水稻生育前期,化肥配施鸡粪堆肥、猪粪堆肥和酒糟堆肥较化肥单施均提高了土壤微生物对化肥15N的固持率,降低了土壤矿质态15N含量。而随水稻生育进程推进,在先前被微生物固持的化肥15N化肥配施鸡粪堆肥、猪粪堆肥和酒糟堆肥处理分别有87%、81%和81%被释放,增加了同期水稻对化肥15N的吸收量。化肥配施鸡粪堆肥、猪粪堆肥和酒糟堆肥,化肥15N利用率均超过60%,而单施化肥利用率仅39%。可见,配施有机肥提高化肥氮利用率,其机制之一是通过促进土壤微生物对化肥氮的有效调控,使化肥氮更好地被转化利用。  相似文献   

2.
《土壤与作物》2014,(1):15-21
稳定性同位素标记技术在生态学的诸多研究领域中有着广泛应用,其中15N标记技术在草地生态系统氮素循环研究中发挥了重要作用。本文综述了15N标记技术在国内外草地生态系统中生物固氮、氮肥的去向和利用、氮素在土壤中的转化以及氮素损失方面的研究现状及进展,并对存在的问题和前景进行了分析和展望,为更好的利用氮肥、充分发挥草地生产潜力提供理论依据。图1,参53。  相似文献   

3.
蚯蚓作为典型的大型土壤动物,对土壤结构和功能的形成具有重要的影响,被称作土壤生态系统工程师.国内外关于蚯蚓对土壤理化性质、土壤微生物群落组成、有机质分解和土壤矿化等方面的研究较多,但其对土壤碳、氮循环关键过程的系统总结较少.本文总结了蚯蚓通过摄食、挖洞、产生蚓粪及促进团聚体形成等活动对土壤碳氮循环产生的直接影响,及对微...  相似文献   

4.
土壤微生物量氮的动态及其生物有效性研究   总被引:38,自引:6,他引:38  
采用盆栽试验和15N示踪技术对玉米生长期间不同施肥处理黑土土壤微生物量氮的动态变化及其与土壤氮素组分、玉米吸氮量之间的关系进行研究。结果表明,在玉米生长期间,施肥并没有影响土壤微生物量氮的变化趋势,但不同施肥处理土壤微生物量氮的含量明显不同。玉米植株残体的加入,增加了土壤微生物量氮的数量,降低了土壤微生物对肥料15N的释放率。土壤微生物量氮与土壤全氮含量呈极显著的正相关(r=0.727**),与土壤碱解氮及玉米吸氮量之间均呈显著正相关(相关系数分别为0.528* 和0.536*)。土壤微生物量氮和土壤氮素组分对作物吸氮量的通径分析表明,土壤微生物量氮的有效性近于土壤矿质态氮、高于土壤酸解有机氮和非酸解氮。土壤微生物量氮是作物吸收氮素的有效来源。  相似文献   

5.
参与土壤氮素循环的微生物功能基因多样性研究进展   总被引:12,自引:2,他引:12  
土壤氮素循环是生物地球化学循环的重要组成部分, 不但影响着土壤生产力和可持续发展, 还影响着全球环境变化.土壤微生物在土壤氮循环中发挥着不可替代的作用, 参与了包括固氮作用、氨化作用、硝化作用和反硝化作用等重要生态过程.近十年中, 分子生物学技术的发展为从功能基因角度研究与土壤氮循环密切相关的微生物功能群结构、组成和丰度的变化提供了新的契机.本文综述了参与土壤氮循环的微生物功能基因多样性研究进展, 并展望了未来发展方向.  相似文献   

6.
土壤中无机氮的微生物同化和非生物固定作用研究进展   总被引:8,自引:0,他引:8  
程谊  张金波  蔡祖聪 《土壤学报》2012,49(5):1030-1036
土壤中无机氮的迅速固持有利于土壤氮的持留,从而减少NO3-淋溶、NH3挥发以及N2O和NO排放损失。本文综述了土壤中无机氮的微生物同化和非生物固定作用,指出了无机氮微生物同化和非生物固定在氮循环中的重要意义,初步讨论了生物过程和非生物过程固定无机氮的机制和影响因素。但是对于非生物固定NO3--N,其机理目前还不清楚。从现有的文献报道来看,能够解释非生物固定NO3--N机制的仅有铁环假说。然而,铁环假说尚未得到完全证实,有待于深入的研究。  相似文献   

7.
土壤微生物对施入肥料氮的固持及其动态研究   总被引:34,自引:0,他引:34  
采集长期定位试验(14年)土壤(棕壤)进行盆栽试验,并应用同位素^15N示踪技术研究了土壤中微生物对肥料氮的固持及其动态,结果表明,施肥后5天土壤微生物对施入人肥氮的固持达达到最高,除单施氮肥处理的固持量占施入人肥氮量的5.4%外,其余各处理均天13.3%-15.4%间,施肥后土壤微生物量氮的增加主要来自化肥氮,后者占微生物体总氮量的64.1%-87.3%,在作物生长期间微生物固持的化肥氮逐渐释入  相似文献   

8.
不同氮肥处理对土壤和番茄中稳定性氮同位素丰度的影响   总被引:2,自引:0,他引:2  
采用盆栽番茄的方式,根据氮肥类型和施用量,设置8种肥料处理(以纯氮计):C1(有机肥,9.5g)、CU1(有机肥、化肥均为4.75g)、U1(化肥,9.5g)、C2(有机肥,19g)、CU2(有机肥、化肥均为9.5g)、U2(化肥,19g)、C3(有机肥,29g)、CK(不施肥料),分析各处理的土壤、番茄叶片和果实δ15N的变化,比较不同部位δ15N的差异.结果表明,(1)施用有机肥能显著提高土壤、叶片和果实的δ15N(P <0.05),而施用化肥则显著降低其δ15N(P<0.05).纯有机肥(C1、C2、C3)处理番茄叶片和果实δ15N分别为6.02‰ ~ 12.75‰和4.69‰~8.24‰,纯化肥(U1、U2)处理为2.83‰~5.53‰和2.66‰ ~4.50‰,纯有机肥处理δ15N显著高于纯化肥处理.(2)番茄植株不同部位δ15N的比较结果为老叶>新叶>新茎>果实>老茎>侧根>主根,表明氮素由根部吸收经过茎的运输到达叶片和果实的过程中,15N逐步富集.(3)建议将利用氮稳定同位素技术鉴别番茄果实纯有机肥和纯化肥处理的δ15N的阈值设定为5‰,有机种植检测可以借鉴此法设定相应的临界值,以鉴别有机种植和非有机种植.研究结果表明通过氮稳定同位素技术可以区分植物中氮素的来源,从而得知作物生长过程中的施肥情况,为有机食品检测提供有效方法.  相似文献   

9.
蛋白质需要量研究是反刍动物蛋白质营养的核心, 而准确测定进入瘤胃并被微生物利用的内源氮是测定饲料蛋白质真消化率和反刍动物蛋白质需要量的关键步骤。为此, 文章综述了近30年内关于反刍动物内源氮来源、内源氮代谢的研究方法、进入瘤胃的内源尿素氮、内源总氮以及各部分氮对合成微生物氮的贡献的研究进展。  相似文献   

10.
蛋白质需要量研究是反刍动物蛋白质营养的核心, 而准确测定进入瘤胃并被微生物利用的内源氮是测定饲料蛋白质真消化率和反刍动物蛋白质需要量的关键步骤.为此, 文章综述了近30年内关于反刍动物内源氮来源、内源氮代谢的研究方法、进入瘤胃的内源尿素氮、内源总氮以及各部分氮对合成微生物氮的贡献的研究进展.  相似文献   

11.
Quantitative analyses of nitrogen cycling genes in soils   总被引:2,自引:0,他引:2  
  相似文献   

12.
Nitrogen is a major nutrient that frequently limits primary productivity in terrestrial ecosystems. Therefore, the physiological responses of plants to soil nitrogen (N) availability have been extensively investigated, and the study of the soil N-cycle has become an important component of ecosystem ecology and biogeochemistry. The bulk of the literature in these areas has, however, overlooked the fact that most plants form mycorrhizal associations, and that nutrient uptake is therefore mediated by mycorrhizal fungi. It is well established that ecto- and ericoid mycorrhizas influence N nutrition of plants, but roles of arbuscular mycorrhizas in N nutrition are less well established; perhaps even more importantly, current conceptual models ignore possible influences of arbuscular mycorrhizal (AM) fungi on N-cycling processes. We review evidence for the interaction between the AM symbiosis with microbes and processes involved in soil N-cycling. We show that to date investigations have rather poorly addressed such interactions and discuss possible reasons for this. We outline mechanisms that could potentially operate with regards to AM fungal – N-cycling interactions, discuss experimental designs aimed at studying these, and conclude by pointing out priorities for future research.  相似文献   

13.
Surface samples (0–10 cm) of two equally-acidic soils (pH 4.5) exhibited very different net N mineralization rates. In an andic soil, it was negligible despite a high (46%) organic matter content, whereas it was appreciable in a colluvial soil of lower (14%) organic matter content. During incubation experiments no NO?3 was observed in the andic soil, whereas nitrification occurred in the colluvial soil. Incorporation of added 15NH4 is much higher in the andic soil, despite no greater biological immobilization than in the colluvial soil.Added 15NO2? and nitrapyrin experiments showed that incorporation of inorganic-N into the organic fraction of the andic soil can also proceed via a chemical pathway, NO2? self-decomposition and fixation on organic matter. This can be a limitation to NO3? appearance in this soil. The protective effect of amorphous aluminium is also considered to lower mineralization of organic-N. These two mechanisms could be responsible for low concentration of inorganic-N in many aluminous humic-rich acidic soils.  相似文献   

14.
氮足迹研究进展   总被引:13,自引:0,他引:13  
自19 世纪工业革命以来, 由于氮肥施用、化石燃料燃烧等人类活动带入全球生态系统的活性氮逐年增加。这些流入生态系统的活性氮造成了严重的环境问题, 例如水体富营养化、地下水硝态氮污染、平流层臭氧层破坏等。氮足迹模型是在全球活性氮污染日趋严重的背景下提出的。氮足迹研究在定量评价人类生产生活方式对活性氮排放的影响, 调整人类的生产生活方式, 减少活性氮危害等方面有重要的理论价值与实践意义。近年来, 氮足迹的研究日益受到西方各国科学家的关注, 其中已有少量相关研究发表。相比较而言, 国内科学界对氮足迹研究的关注还不多, 目前为止还没有有关氮足迹研究的文献资料。本文综述了氮足迹的概念、研究意义、主要模型方法、国外研究进展以及未来研究热点。并指出氮足迹计算模型的改进与发展、主要活性氮在氮足迹计算中的权重以及活性氮污染严重区域或国家的氮足迹评价将是未来氮足迹研究的热点。  相似文献   

15.
Ecophysiology of the internal cycling of nitrogen for tree growth   总被引:1,自引:0,他引:1  
Internal cycling of nitrogen has been shown to be a major source of nitrogen used for the seasonal growth of both evergreen and deciduous trees providing up to 90% of N used for leaf growth of some species. The processes of internal cycling comprise seasonal nitrogen storage, followed by remobilisation during either periods of growth (e.g. in the spring) or during leaf senescence. The ecophysiology of these processes is reviewed, along with the methods used to quantify their contribution to tree growth. Nitrogen budget studies have been widely used to estimate internal cycling, particularly in relation to soil fertility. These studies have shown that as trees develop their rate of N uptake decreases, but as they grow their storage capacity increases, However, budget studies are imprecise and have not always quantified remobilisation adequately. An alternative approach has been the use of 15N to quantify N uptake and partitioning, allowing precise measurements of N storage and remobilisation to be made. The use of isotopes has allowed experiments to be run which have shown that environmental factors such as soil fertility influence the amount of N stored, but have no direct influence upon the amount of N remobilised. These methods are discussed in light of recent research on N remobilisation, which has provided an understanding of the processes of storage and remobilisation which potentially allows direct measurements to be made in field grown trees for the first time.  相似文献   

16.
The herbicide glyphosate was sprayed aerially on a section of conifer forest in Atlantic Canada that had been previously clearcut and reforested. Glyphosate was then tested for effects on ammonification, nitrification, and denitrification for a period of 8 months by comparing microbial activity in treated and untreated zones of the clay loam forest soil and the overlying decomposing litter, both with a pH of 3.8. With ammonification, there was generally a stimulation of activity in both the forest litter (FL) and forest soil (FS) that had been exposed to glyphosate during spraying. Nitrification rates in FL and FS were very low and glyphosate had no appreciable stimulatory or inhibitory effect on nitrification. Although glyphosate stimulated denitrification in a few instances, it generally had no significant effect on denitrification activity in FL and FS exposed during spraying. With all processes, microbial activity in FL was significantly greater than that in FS. Laboratory bioassays were also performed with FL and FS, as well as two silt loam (pH 5.8 and 6.4) and one sandy loam (pH 6.8) agricultural soils, using glyphosate concentrations up to 200 times higher than field application rates. With ammonification and denitrification, glyphosate generally stimulated activity at all levels tested and in all soil used. Glyphosate stimulated ammonification by 50% at concentrations ranging from 140 to 550 μg g?1 for the soils and >4000 μg g?1 for FL. With denitrification, the corresponding herbicide levels were approximately 2250 μg g?1 for FS, > 10,000 for FL, and 450 for an agricultural soil. With nitrification, it was estimated that glyphosate concentrations greater than 1000 to 2000 μg g?1 would be required to cause a 50% inhibition of activity. The careful use of glyphosate in forestry should have no toxic effects on N cycling in soils.  相似文献   

17.
This work investigated the effect of plant species (Eucalyptus camaldulensis vs Arundo donax) on N-turnover during land application of pre-treated municipal wastewater. The study was carried out in 40-L pots under field conditions and revealed strong effects of plant species on N uptake, potential nitrification rate (PNR), and gaseous losses of N. E. camaldulensis accumulated 38% more N in its biomass than A. donax. With regard to the soil N, there was no effect of plant species on total Kjeldahl N content. The lower PNR measured in pots planted with A. donax could not be explained by differences in archaeal or bacterial amoA gene copies; suggesting that plant species affected the activity of nitrifiers.The loads of NH4+-N applied were not found to have delayed the oxidation of NH4+-N, despite the differences in PNR, as indicated by soil solution and soil NH4+-N concentrations in the rhizosphere of the two plant species throughout the period of the study. However, decreased concentrations of NO3-N were measured in the pots planted with A. donax from the end of June onwards. This finding implies increased losses of N through denitrification and reveals a direct effect of plant species on the activity of denitrifiers since differences in copy numbers of denitrification genes (nirK, nirS, nosZ) were observed only early in the season. Our findings reveal a critical role of plant species on N cycling in terrestrial environments with important implications for the management/restoration of N-polluted areas, such as riparian zones, and for land treatment systems and constructed wetlands.  相似文献   

18.
从形态学、生理生化、遗传学和分子生物学等方面综述了近年来国内外植物N素营养基因型差异的最新研究成果,并指出通过新品种选育提高植物N素利用效率切实可行。  相似文献   

19.
Abstract

Soil carbon (C) content in agro‐ecosystems is important in a global context because of the potential for soil to act as a sink for atmospheric CO2. However, soil C storage in agro‐ecosystems can be sensitive to land management practices. The objective of this study was to examine the impact of land management systems on C and nitrogen (N) cycling in an Ultisol in Alabama. Soil samples (0–10, 10–20, and 20–30 cm depths) were collected from a Marvyn sandy loam soil (fine‐loamy, siliceous, thermic Typic Hapludults) under five different farm scale management systems for at least 5 years. The five systems were cotton (Gossypium hirsutum L.) production managed with 1) conventional tillage only, 2) conventional tillage with a grazed winter cover crop (wheat, Triticum aestivum L.), 3) conservation tillage with a winter cover crop grown for cover only with strip tillage; or taken out of cotton production with either 4) long‐term fallow (mowed), or 5) Conservation Reserve Program with loblolly pine (Pinus taeda L.) (CRP‐pine). Total N, total organic C (TOC), total P, and soil C:N ratios were determined. Potential C mineralization, N mineralization, C turnover and C:N mineralization ratios were determined on samples during a 30‐day laboratory incubation study. The fallow system had significantly higher TOC concentration (7.7 g kg‐1 C) while the CRP‐pine system had lower TOC concentration (3.1 g kg‐1 C) compared with the farmed management systems (=4.7 g kg‐1 C). The fallow system had a significantly lower C turnover at all three soil depths compared with the other management systems. At the 0–10 cm depth, the highest C:N mineralization ratio levels were observed in management systems receiving the most tillage. Our results indicate that for Ultisols in the Southeast the use of surface tillage in land management systems is a controlling factor which may limit soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号