首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于近红外光谱的土壤全氮含量估算模型   总被引:4,自引:2,他引:4  
土壤全氮是诊断土壤肥力水平和指导作物精确施肥所需的重要信息,建立土壤全氮的近红外光谱估测模型并对建模波段进行优化选择对于土壤养分信息快速获取和精确农业发展具有重要意义。该研究以中国中、东部地区5种主要类型土壤为研究对象,利用近红外光谱仪采集土壤样品的光谱信息,结合近红外区域分子振动特点选取全谱、合频、一倍频、二倍频和N-H基团及其组合的8个波段,采用多元散射校正等多种预处理方法组合进行处理,结合偏最小二乘法(PLS)对每个波谱区域进行定标建模。结果表明,利用4000~5500cm-1波谱区域结合附加散射校正处理过的原始光谱建立的模型精度表现最好,其内部互验证决定系数达到0.90,均方根误差为0.16。经不同类型土壤的观测资料检验,模型验证决定系数为0.91,均方根误差为0.15,相对分析误差RPD为3.40,表明模型具有极好的预测能力。因此,利用近红外光谱可以实现土壤全氮的快速估测,且以合频波段(4000~5500cm-1)为建模区域可以得到更好的预测效果。  相似文献   

2.
基于高分辨率反射光谱的土壤营养元素估算模型   总被引:12,自引:0,他引:12  
研究了土壤中营养元素含量(N、P、K)与土壤可见光/近红外光谱之间的关系。在对原始光谱进行预处理分析后,计算出了4种光谱指标:反射率Reflectance、一阶导数FDR、倒数之对数log(1/R)和波段深度Depth。通过偏最小二乘回归分析建立了营养元素与4种光谱指标的经验模型,并且利用验证样本集对回归模型进行了验证。结果表明,可见光/近红外反射光谱具有快速估算土壤中营养元素含量的潜力。  相似文献   

3.
基于133个滨海湿地土样的全氮(TN)含量和光谱反射率(R)及其对数(lgR)、对数的一阶微分((lgR)'')、倒数(1/R)、倒数的一阶微分((1/R)'')、一阶微分(R'')、平方根(√R)、一阶微分的倒数(1/(R)'')变换,采用偏最小二乘回归(PLSR)、随机森林回归(RFR)和支持向量机回归(SVR)3种算法分别建立土壤TN含量估测模型。结果表明:①土壤TN含量与光谱变换形式相关性由高到低为:(1/R)''> R''> (lgR)''> 1/R > lgR > 1/(R)''> √R > > R,经光谱变换,土壤TN含量与变换光谱的相关性均高于R,其中与(1/R)''的Pearson相关系数最大为0.746。②PLSR和SVR基于R''、(1/R)''、(lgR)''和1/(R)''变换构建的模型、RFR方法构建的所有模型R2均大于0.732,均可用于滨海湿地土壤TN含量的估算。③基于1/(R)''建立的SVR模型预测精度最高,其R2为0.987,RMSE为0.057 g/kg,MAE为0.050 g/kg,是预测滨海湿地土壤TN含量的最优模型,可为准确获取滨海湿地土壤TN含量提供稳定方法。  相似文献   

4.
玉米叶片氮含量的高光谱估算及其品种差异   总被引:7,自引:4,他引:7  
准确、快速、及时地对玉米氮营养状况做出判断是氮肥合理施用的基础。该研究在水培条件下对3个玉米品种(组合)叶片氮含量(LNC)的高光谱敏感波段、估算模型及其品种差异进行了探讨。结果表明,LNC与不同波段叶片光谱反射率的相关性存在品种差异,但3个品种(组合)都在500~649 nm和691~730 nm表现极显著的负相关关系,并在同一波长获得最高的相关系数,说明可以利用统一的波段来预测不同品种的LNC。依品种建立了LNC与归一化差值光谱指数(NDSI)或比值光谱指数(RSI)的定量关系模型,NDSI(714,554)和RSI(714,554)所建模型的拟合度最好,直线和指数模型拟合度均达到极显著水平,可以用来估算玉米LNC。玉米LNC估算中,以该品种数据所建模型的估算偏差最低,利用综合模型或其他品种模型则加大了估算偏差,高估与低估的最高偏差分别为35.6%和32.7%。在利用高光谱技术进行玉米氮营养状况诊断的研究及应用中,应考虑品种间差异。  相似文献   

5.
含水率对土壤有机质含量高光谱估算的影响   总被引:3,自引:1,他引:3  
土壤含水率对有机质(soil organic matter,SOM)含量高光谱估算精度有很大的影响。为了探讨SOM高光谱估算中土壤含水率的影响,该文对烘干土、风干土和质量含水率为5%~40%(按5%递增)的土壤样本进行了室内高光谱测量,对光谱数据进行了反射率、反射率一阶导数和反射率倒数对数3种光谱数据变换,运用偏最小二乘回归法(partial least squares regression,PLSR)建立了相应的SOM估算模型。结果表明,风干土的SOM高光谱估算精度较好;当含水率水平小于25%时,SOM估算模型精度受含水率的影响较大,光谱数据进行反射率倒数对数变换后的模型精度最高;当含水率水平大于等于25%时,水分对土壤光谱反射率的影响要大于SOM,不适宜利用土壤光谱数据进行SOM含量高光谱估算。该研究可为大田环境不同含水率情况下光谱估算SOM提供参考。  相似文献   

6.
以新疆博斯腾湖西岸湖滨绿洲为研究区,利用实测的土壤有机质含量与高光谱数据,通过多元逐步回归与偏最小二乘回归法分别构建反演土壤有机质含量估算模型.结果表明:(1)研究区土壤有机质含量变化范围为5.09~44.00 g·kg-1,均值为16.87 g·kg-1,变异系数为44.69%,呈中等变异;土壤有机质含量与土壤光谱反...  相似文献   

7.
基于高光谱数据的土壤全氮含量估测模型对比研究   总被引:1,自引:0,他引:1       下载免费PDF全文
构建基于高光谱数据的土壤全氮含量估测模型,为快速、准确监测农田土壤全氮含量,判断作物生长发育情况和评价土地质量提供新的技术和方法.以新疆南疆地区主要类型土壤为研究对象,于室内测定土壤全氮含量和光谱反射率数据,利用偏最小二乘回归(PLSR)、支持向量机回归(SVM)、随机森林回归(RF)与光谱反射率(R)及其4种数学变换...  相似文献   

8.
淮北平原土壤高光谱特征及有机质含量预测   总被引:3,自引:0,他引:3  
陆龙妹  张平  卢宏亮  刘斌寅  赵明松 《土壤》2019,51(2):374-380
以安徽省淮北平原的蒙城县为研究区,采集131个表层土壤(0~20 cm)样品。采用Cary 5000分光光度计测定土壤光谱反射率,分析该地区典型土壤类型的光谱特征,利用偏最小二乘回归方法建立土壤有机质光谱预测模型。首先比较不同光谱变换对土壤有机质含量光谱预测建模的影响;其次根据光谱相似性对土壤样品进行分类,比较不同土壤类型和不同光谱分类的有机质光谱预测精度。结果表明:①不同土壤有机质含量和不同土壤类型光谱曲线在整体波段范围内趋势基本一致;有机质含量与光谱反射率呈显著负相关;有机质含量越低,曲线特征差异明显,可能是受其他因素的影响;②土壤光谱反射率经倒数的对数处理后,有机质光谱建模的决定系数和相对分析误差均有所提高,均方根误差降低,模型预测效果较优;③按照光谱相似性分类后建立的有机质光谱预测模型,比按土壤类型建立的光谱预测模型精度明显提高。  相似文献   

9.
玉米全氮含量高光谱遥感估算模型研究   总被引:13,自引:5,他引:13  
该文对不同品种玉米测定了其室内光谱反射率及其对应的全氮含量,采用相关性分析以及单变量线性与非线性拟合分析技术,对全氮含量与原始光谱反射率、光谱反射率一阶微分、一些高光谱特征参数(如红边波长、红边位置以及红边面积等)以及由一阶微分光谱所构建的一些比值植被指数和归一化植被指数之间的关系进行了分析,结果表明:全氮含量与原始光谱在716 nm处具有最大相关系数(r=-0.847),呈极显著负相关,并且基于此波长所构建的对数关系估算模型明显优于线性模型;与光谱反射率一阶微分值在759 nm处具有最大相关系数(r=0.944),呈极显著正相关,并且基于此波长所构建的线性和非线性模型的拟合效果接近;对于所选取的3类高光谱特征变量,全氮含量除了与黄边位置(λy)以及由红边面积和黄边面积所构建的比值植被指数和归一化植被指数的相关性较弱之外,与其余变量均呈极显著相关关系,说明由这些变量对玉米全氮含量进行估算具有可行性;对所建立的各类方程进行精度检验,最终筛选确定由759 nm处的光谱反射率一阶微分值所构建的指数模型作为对玉米全N含量的预测模型最为理想。  相似文献   

10.
为明确不同玉米品种SPAD值及光谱反射率进行氮素营养诊断的可行性,以华北地区的6个主要玉米杂交品种中单909、隆平206、郑单958、金赛06-9、农华101与登海605为材料,设置0.04、0.4、2.0和4.0 mmol/L 4个氮水平的砂培试验,研究了玉米拔节期氮含量、叶片光谱反射率及SPAD值的处理间差异,及其不同氮水平下玉米氮含量与叶片550 nm处的光谱反射率及SPAD值的相关性。结果表明:来源于氮水平的变异远高于品种及二者交互作用引起的变异,植株氮含量与叶片550 nm处的光谱反射率呈显著负相关关系(R=-0.808 8),氮含量与SPAD值存在极显著的正相关性(R=0.895 6)。因此,通过SPAD值及光谱反射率对华北地区玉米杂交种进行氮素营养诊断是可行的,且用SPAD值来诊断氮素营养状况要比光谱反射率的精确度高。  相似文献   

11.
玉米叶片SPAD值、全氮及硝态氮含量的品种间变异   总被引:9,自引:2,他引:9  
研究比较两种土壤肥力条件下,4个春玉米品种在喇叭口期至成熟期间叶片SPAD值、全氮及硝态氮含量的变异程度、及其与氮素积累和产量形成的关系,以期为不同品种植株的氮素营养测试指标的优化提供依据。结果表明,叶片SPAD值与产量、吸氮量及生物量呈显著相关,该值主要受氮肥水平影响,并因土壤肥力而变异。从喇叭口期至灌浆期间平均变异幅度为17.7%,但品种间变异很小,平均仅为4.3%。说明利用SPAD值诊断玉米氮素营养时,其诊断指标不需要因品种而调整,但需要因不同肥力而调整。在新立城低肥力条件下,喇叭口期(V12)和抽雄期(VT)的SPAD临界值指标分别为46.1和57.8;在德惠高肥力条件下,两个时期的SPAD值临界值较为接近,分别为59.9和60.3。植株叶片硝态氮含量在土壤肥力间及品种间变异均较大,变异幅度分别为43.1%和29.3%,且与产量、吸氮量及生物量的相关性均较差,不适于在大面积范围内单独作为玉米氮素营养状况的评价指标。  相似文献   

12.
为解决吉林省半干旱区覆膜滴灌条件下合理施氮问题,通过两年(2016—2017年)田间试验,研究了覆膜滴灌等氮量投入条件下,不同运筹模式(N1:100%基肥;N2:50%基肥+50%拔节肥;N3:30%基肥+50%拔节肥+10%大口肥+10%开花肥;N4:20%基肥+30%拔节肥+20%大口肥+20%开花肥+10%灌浆肥)对春玉米产量、氮素利用效率、关键生长节点氮素积累特征以及生育期内土壤无机氮含量变化和氮素平衡的影响。结果表明,分次施氮各处理(N2、N3、N4)玉米产量显著高于100%基肥处理(N1),其中N4处理玉米产量最高,较N1处理分别提高22.44%(2016年)和35.31%(2017年)。与N1处理相比,N2、N3、N4显著提高了玉米氮素吸收利用率、农学利用率和偏生产力,提高幅度依次为52.02%~83.21%、63.69%~120.78%、11.85%~22.46%(2016年)和92.44%~129.38%、127.23%~203.09%、22.10%~34.01%(2017年),且均以N4处理最高。施氮显著提高了玉米拔节期至成熟期氮积累量,其中开花期至成熟期氮积累量以N4处理最高。与N1处理相比,N2、N3、N4提高了玉米开花期至成熟期0~20 cm土壤无机氮含量,并降低成熟期40~100 cm土壤无机氮含量。土壤-作物系统氮素平衡中,N2、N3、N4处理较N1处理显著降低了氮素表观损失量,其中N4处理氮素表观损失量最低。综上所述,在本试验条件下,总施氮量210 kg·hm-2时,20%基肥+30%拔节肥+20%大口肥+20%开花肥+10%灌浆肥为该区域覆膜滴灌条件下氮肥最佳运筹模式。  相似文献   

13.
基于自然光照反射光谱的温室黄瓜叶片含氮量预测   总被引:6,自引:3,他引:6  
利用便携式光谱辐射仪测量了自然光照条件下温室黄瓜叶片的光谱反射率,并计算了反射率光谱的一次微分光谱。反射率光谱以及一次微分光谱与叶片含氮量的相关分析表明,温室内光谱特性与叶片含氮量相关性最大的敏感波段分别是505~664 nm和685~722 nm。当利用原始光谱进行分析时,通过变量筛选得到了4个敏感波长,分别是568、596、640和664 nm。偏最小二乘回归分析(PLSR)以及归一化颜色指数(NDCI)分析都表明,建模时的相关系数RC>0.800,模型验证时的相关系数RV>0.700。对微分光谱进行的相关分析结果表明,利用单一敏感波长520 nm就可获得理想模型,建模时的相关系数为0.880,模型验证时的相关系数为0.787。对比原始光谱的PLSR模型与一阶微分光谱的一元线性回归模型可以得知,原始光谱以及一阶微分光谱都可用于温室内叶片含氮量的预测,而且一阶微分光谱在一些特殊的波长处具有更高的预测能力,这些模型将成为开发便携式作物长势诊断仪器的技术基础。  相似文献   

14.
【目的】研究等氮量投入条件下,长期使用不同有机物料替代无机肥的适宜比例对玉米氮养分累积、运移和氮肥利用效率和产量的影响,可以为吉林黑土区春玉米高效施肥,维持并提高土壤肥力提供理论依据。【方法】以国家(公主岭)黑土肥力与肥料效益长期定位试验为研究平台,玉米品种郑单958为供试作物,设5个不同处理,即:不施肥(CK)、氮肥(N)、氮磷钾化肥(NPK)、粪肥+NPK(MNPK)、秸秆还田+NPK(SNPK)。在玉米苗期、拔节期、大喇叭口期、抽丝期、灌浆期和成熟期采集地上部植株样品,分析玉米植株不同部位的氮含量和累积量以及运移比例,计算氮肥利用效率。【结果】在玉米各生育时期,MNPK处理氮素累积量均高于NPK和SNPK处理;拔节期至大喇叭口期氮素累积量为19.67~86.44 kg/hm2,其中MNPK氮素累积量达到86.44 kg/hm2,为氮素累积量增加最多、吸收速率最快的时期;在成熟期,MNPK、NPK、SNPK、N和CK处理植株氮素总累积量分别达到286.2、276.2、249.4、151.7和63.6 kg/hm2,SNPK处理氮素累积量略低于NPK处理,MNPK显著高于NPK和SNPK(P0.05)。MNPK、SNPK、NPK和N处理中,叶和茎鞘总氮素转移量分别为99.0、79.7、87.2和41.8 kg/hm2,总的转移氮素对籽粒的贡献率分别为51.0%、47.7%、47.2%和43.4%,以MNPK处理的总氮素转移量和转移氮素对籽粒贡献率最高,与其他处理差异显著。在各处理中,MNPK、NPK和SNPK三个处理的氮肥偏生产力(PFP)均大于60kg/kg,以MNPK最高,达到65.4 kg/kg。与化肥NPK处理比较,SNPK氮素偏生产力和收获指数差异不显著。MNPK处理土壤无机氮的含量在玉米整个生育期一直高于化肥NPK处理,并在玉米大喇叭口期达到最高,达到60.83 mg/kg,并与其他处理差异显著。【结论】长期有机无机配合施用,不仅能有效调节氮素积累和转运,还能提高氮肥利用效率。在适宜氮用量为165 kg/hm2时,以农家肥氮替代70%,或秸秆氮替代30%化肥氮素,既减少化肥氮投入,又增加了土壤供氮能力,因此,有机肥氮替代部分化肥氮是吉林省黑土区春玉米氮素管理的有效途径之一。  相似文献   

15.
基于成像光谱技术的寒地玉米苗期冠层氮含量预测模型   总被引:1,自引:1,他引:1  
为了探索寒地玉米冠层氮素含量,以不同氮素水平下玉米大田试验为基础,利用高光谱成像技术探讨苗期玉米冠层光谱,通过相关矩阵法选择植被指数的变量,并依据叶片氮素含量与植被指数的相关性,建立玉米冠层氮素含量预测模型。结果表明:根据玉米冠层高光谱图像,选择与各波段相关性较强的525、566、700、715、895 nm作为植被指数的变量,构建与氮素含量相关性强的植被指数归一化植被指数NDVI(normalized difference vegetation index)、归一化光谱植被指数NDSI(normalized difference spectral index)、比值光谱指数RSI(ratio spectral index)、差值光谱指数DSI(difference spectral index)。以与叶片氮素含量相关性较高的植被指数为自变量,建立单变量、多变量回归预测模型。采用单变量NDVI二次函数回归模型作为0、50 kg/hm~2施氮量下玉米冠层氮素含量预测模型,其R~2分别为0.719、0.803。在100 kg/hm~2施氮量下玉米冠层氮素含量的预测模型为3变量回归模型,其R~2达到0.657。用置信椭圆F检验法检验预测模型,其F值均小于F0.05,估测值与实测值间R2分别是0.724、0.798、0.655,标准误差RMSE分别为0.156、0.140、0.156 mg/g,表明实测值和估测值间的差异不明显,预测模型可用。  相似文献   

16.
为更好地体现出光谱与土壤全氮(soil total nitrogen,STN)含量之间的响应关系,实现以高光谱快速估测土壤全氮含量,该研究以无人机搭载高光谱传感器获取农田土壤高光谱影像,提取光谱反射率并进行数学变换,基于灰色关联度和皮尔逊相关系数提取各光谱中土壤全氮含量的敏感波段,基于敏感波段采用偏最小二乘回归(partial least squares regression,PLSR)、岭回归(ridge regression,RR)和随机森林(random forest,RF)构建土壤全氮的高光谱反演模型,筛选出最优模型并对研究区土壤全氮含量进行反演制图。结果表明:1)反射率的倒数光谱中的敏感波段(996~1 003 nm)集中在近红外长波范围内,反射率的一阶微分(first derivative of reflectance,FDR)光谱中的敏感波段(398~459、469和472~1 003 nm)和反射率对数的一阶微分光谱中的敏感波段(398~459、463~973和978~1 003 nm)在可见光和近红外范围内都有分布,反射率的一阶微分光谱中的敏感波段(615~625、632和666~670 nm)主要集中在可见光的红光范围内。2)与基于灰色关联度提取敏感波段构建模型相比,基于皮尔森相关系数提取敏感波段所构建的土壤全氮估测模型精度更高。3)RF-FDR模型精度最高,其验证集R2为0.859,均方根误差为0.143 g/kg,平均绝对误差为0.114 g/kg。基于RF-FDR模型对研究区土壤全氮含量进行反演制图,发现研究区大部分面积土壤全氮含量处于1.50~2.00 g/kg范围内,与实际情况相符。研究可为农田土壤全氮含量快速估测提供技术参考和支撑。  相似文献   

17.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算   总被引:1,自引:4,他引:1  
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。  相似文献   

18.
【目的】充足的氮素供应是玉米高产的保证,研究红壤上玉米氮素吸收和土壤氮素盈余对长期不同施肥措施的响应特征,旨在为红壤地区玉米持续高产和土壤氮素科学管理提供依据。【方法】本研究依托江西进贤双季玉米定位试验,选择不施肥(CK)、常量化肥(NPK)、两倍量化肥(DNPK)、有机肥(OM)与常量化肥+有机肥(NPKM) 5个处理,以10年为一个试验阶段,分析了35年来玉米产量、氮肥利用率、0—20 cm土层土壤碱解氮含量以及氮素表观盈余量等的阶段性变化规律。【结果】施肥处理(NPKM、DNPK、OM和NPK)玉米35年平均产量较不施肥对照(CK)分别显著提高了3.36~9.07、3.31~5.64、2.46~6.72和1.91~3.70倍,氮素吸收量分别显著提高了5.20~11.93、4.33~7.02、3.66~5.90和1.80~3.64倍。在试验0~10年,各施氮处理间玉米产量无显著差异,氮素吸收量NPKM、DNPK和OM处理间无显著差异,但均显著高于NPK处理。在试验11~20年,NPKM和DNPK处理产量与氮素吸收量显著高于NPK和OM处理;在试验21~35年,NPKM处理的产量和氮...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号