首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】 系统分析连续11年增量施磷下赤红壤蔗地土壤全磷、Olsen-P以及地表径流磷流失量的变化特征和土壤磷素变化与磷盈亏、蔗茎产量的响应关系,为土壤磷素科学管理提供参考。【方法】 依托长期肥力及地表径流定位监测试验(2008年—),选取不施肥(CK)、推荐施肥(OPT)和增量施磷(OPT+P)3个处理,测定土壤全磷、Olsen-P含量及地表径流磷流失量,分析土壤磷素变化与磷累积盈亏量的关系,采用Mitscherlich模型拟合蔗茎产量对Olsen-P的响应曲线,计算土壤Olsen-P农学阈值,并推算施肥处理土壤Olsen-P含量从第11年降至环境阈值所需的时间。【结果】 CK处理逐年降低土壤全磷含量,年降速率为0.0251 g·kg -1·a -1。施肥土壤全磷和Olsen-P含量随种植年限波动增加,土壤全磷和Olsen-P增速率OPT+P处理高于OPT处理。不施肥土壤表观磷盈亏10.2 kg·hm -2·a -1,施肥处理土壤表观磷盈余41.3—69.2 kg·hm -2·a -1,占施磷量的31.9%—35.6%,以OPT+P处理显著高于OPT处理67.5%。施肥下赤红壤蔗区土壤全磷和Olsen-P变化量均与土壤累积磷盈亏量呈显著正相关关系(P<0.01),土壤每累积盈余100 kg P·hm -2,OPT处理和OPT+P处理土壤全磷上升0.06 g·kg -1和0.09 g·kg -1,Olsen-P 含量上升11.0 mg·kg -1和9.1 mg·kg -1。土壤每累积亏缺100 kg P·hm -2,CK处理土壤全磷下降0.32 g·kg -1。Mitscherlich模型较好地拟合蔗茎产量与赤红壤Olsen-P含量的响应关系(P<0.01)。其计算出的土壤Olsen-P 农学阈值为12.1 mg·kg -1。施肥显著提高地表径流磷流失量,且OPT+P处理也显著高于OPT处理。地表径流磷流失量与土壤Olsen-P含量显著正相关。基于土壤磷素变化与累积磷盈亏的关系推算得出第11年OPT和OPT+P处理Olsen-P水平降至环境阈值的时间分别需要12年和16年。 【结论】 在南方赤红壤区,施肥尤其增量施磷在提高土壤磷素累积的同时增加了地表径流磷流失风险。在本试验磷的基础养分条件下,按OPT处理施磷,并从甘蔗种植的第2—3年实行隔年施磷可维持土壤磷素处于农学阈值与环境阈值之间。  相似文献   

2.
采用土柱模拟方法研究施用不同剂量磷肥条件下水稻土磷的淋溶损失及土壤中磷素垂直移动规律。结果发现,各施P处理条件下淋洗液中的P含量无明显规律,折合每公顷损失可溶性磷(DP)量为0.9~1.3 kg/hm2,颗粒态磷(PP)0.93~1.17 kg/hm2,总磷(TP)1.83~2.48 kg/hm2,DP与PP含量接近。施磷400 kg/hm2时,表土中的P开始产生下移现象,当施P量高于800 kg/hm2时,P在30 cm土层有明显累积,P移动距离可达10 cm甚至以上。对上层土壤磷素淋失临界值进行预测,得到当土壤Olsen-P阈值为46.11 mg/kg,超过该值土壤P就有可能产生垂直移动,导致磷素流失。  相似文献   

3.
红壤植蔗区施磷的淋溶风险评估   总被引:1,自引:0,他引:1  
【目的】研究红壤地区施用磷肥对甘蔗吸收磷的影响及进行磷淋溶流失风险评估,为蔗区科学合理施用磷肥提供参考依据。【方法】田间试验设不同施磷量处理,测定蔗茎和蔗叶产量及磷素养分含量、土壤Olsen-P含量等指标;室内试验按种植区主汛期的年均降雨量分批次进行模拟降雨,分别收集易溶性和枸溶性磷肥淋溶液,分析磷浓度和总量。【结果】施磷处理比不施磷处理的蔗茎、地上部生物量分别提高了3.0%~8.3%和2.4%~7.1%,其中均为150 kg P_2O_5/hm~2处理增产最高;施磷比不施磷处理的地上部的磷素吸收量提高16.1%~30.1%,大于150 kg P_2O_5/hm~2施磷量处理间,磷素吸收量差异不显著;随施磷量的增加,土壤CaCl_2-P和Olsen-P含量分别提高35.9%~778.6%和25.8%~230.2%;淋溶液磷的浓度和总量均随土壤有效磷含量的增加而增加,增幅达26.38%~53.68%和23.67%~49.70%,且处理间增幅差异显著。施用易溶性磷肥的淋溶液中磷浓度比枸溶性磷肥高10.44%。【结论】施磷量为150 kg P_2O_5/hm~2对红壤地区甘蔗生长较好,但可使土壤淋溶液总磷浓度的提高0.03~0.05 mg/L,施用易溶性磷肥比枸溶性磷肥淋溶液中磷浓度高10.44%,磷淋溶风险更大。  相似文献   

4.
吉林省春玉米种植区土壤磷库特征及磷素淋失风险评价   总被引:1,自引:0,他引:1  
【目的】探明春玉米主产区主要土壤类型的磷库特征,合理评估该区域土壤磷素淋失风险,为减少磷投入、实现土壤磷养分的高效利用及减小养分流失所导致的环境风险提供参考。【方法】于2018年在吉林省春玉米种植区,采集4种主要土壤类型(黑土、黑钙土、白浆土、暗棕壤)表层土(0~20 cm),测定全磷、速效磷(Olsen-P)和水溶性磷(CaCl_2-P)含量,分析土壤CaCl_2-P与Olsen-P含量的关系,确定4种土壤类型磷素淋失的临界值。【结果】黑土、黑钙土、白浆土和暗棕壤全磷含量平均值依次为0.48,0.51,0.55和0.79 g/kg,Olsen-P含量平均值依次为73.34,35.85,39.52和37.02 mg/kg。与第二次土壤普查结果相比,4种土壤类型的全磷含量均有所增加。根据《中国土壤》中土壤Olsen-P含量分级标准,可知大部分土壤的Olsen-P含量都处于极好水平(40 mg/kg)。土壤CaCl_2-P和Olsen-P含量之间的关系符合双直线模型。黑土、黑钙土、白浆土和暗棕壤磷素淋失"突变点"所对应的Olsen-P含量分别为78.82,47.37,48.61和54.00 mg/kg,CaCl_2-P含量为0.94,0.54,0.53和0.75 mg/kg。【结论】随着耕种时间的延长,春玉米种植区土壤全磷含量不断增加,其中Olsen-P含量增加更为明显。当土壤Olsen-P含量大于磷素淋失临界值时,41.4%的黑土、33.3%的黑钙土、30.4%的白浆土和22.7%的暗棕壤均存在磷素淋失风险。  相似文献   

5.
长期施肥对黄壤性水稻土磷平衡及农学阈值的影响   总被引:10,自引:0,他引:10  
【目的】研究长期施肥条件下土壤有效磷(Olsen-P)的演变特征及土壤磷素的累积状况,分析土壤磷素累积与土壤有效磷的响应关系,明确Olsen-P的农学阈值及合理磷肥施用量,为西南黄壤地区科学施用磷肥提供理论依据。【方法】以贵州黄壤肥力与肥料长期定位试验为平台,选择试验中6个处理分别是不施肥(CK)、偏施氮钾肥(NK)、常量氮磷钾肥(NPK)、常量有机肥(M)、减1/2有机肥+减1/2氮磷钾肥(1/2 M +1/2 NPK)和常量有机肥+常量氮磷钾肥(MNPK)。分析西南黄壤性水稻土19年(1995-2013)土壤Olsen-P含量与植株吸磷量,研究土壤Olsen-P的变化规律及土壤累积磷盈亏状况,通过Mitscherlich方程模拟作物相对产量对土壤Olsen-P的响应关系,明确西南黄壤性水稻土的农学阈值,并分析Olsen-P与施肥量之间的关系。【结果】长期施用磷肥处理可显著提高土壤Olsen-P含量,各施磷处理Olsen-P年增长速率在0.72-2.47 mg·kg-1·a-1,其中MNPK处理Olsen-P增长速率最大,NPK处理最小,主要与施肥量的高低有关;有机肥配施化学磷肥比单施化学磷肥和单施有机肥更能有效地促进作物对磷素的吸收;不施磷处理土壤磷素一直处于亏缺状态,施磷处理土壤磷素盈余量为176-1 200 kg·hm-2,其中MNPK处理磷素盈余量最高;土壤累积磷盈余量与土壤Olsen-P增量呈显著线性相关,土壤中磷素每盈余100 kg·hm-2,NPK、M、1/2M+1/2NPK、MNPK处理Olsen-P含量分别提高4.0、2.0、3.2和2.0 mg·kg-1;土壤每年磷盈亏和Olsen-P含量与磷肥施用量呈极显著正相关关系,磷肥用量(纯P)17.4 kg·hm-2时土壤磷盈亏呈持平状态,西南黄壤性水稻土Olsen-P的农学阈值为15.8 mg·kg-1;对应的施肥量(纯P)为每年37.2 kg·hm-2·a-1。【结论】土壤有效磷随土壤磷素盈余而变化,同时与磷素投入量密切相关,当磷肥用量(纯P)为17.4 kg·hm-2·a-1土壤磷素呈持平状态。当磷肥用量(纯P)为37.2 kg·hm-2·a-1时,可获得较高作物产量,磷肥当季利用率高,且磷素在土壤中累积较少。当磷肥用量(纯P)大于37.2 kg·hm-2·a-1时,作物产量对磷肥用量无响应,大量磷素累积在土壤中,增加土壤磷素的流失风险。土壤中累积磷盈余量一定的情况下,西南黄壤性水稻土长期单施化学磷肥提升土壤Olsen-P的速率大于施用有机肥处理。  相似文献   

6.
【目的】研究不同秸秆堆沤还田方式对红壤烤烟坡耕地磷素盈亏的影响,揭示秸秆堆沤还田下红壤烤烟农田生态系统磷素盈亏的特征,为滇中小流域面源污染防治提供科学依据。【方法】在自然降水条件下,研究不同秸秆还田密度(0.75和1.50 kg/m2)、不同秸秆粉碎粒度(1和5 cm)、不同秸秆堆沤处理(水、水与尿素)对红壤烤烟坡耕地径流泥沙磷素流失量、土壤磷素残留量、烤烟磷素吸收量和磷素盈亏的变化特征。【结果】施用1.50 kg/m2秸秆密度、5 cm秸秆粒度、加水堆沤较0.75 kg/m2秸秆密度、1 cm秸秆粒度、加水与尿素堆沤可有效降低产流产沙量(0.22%~43.26%);施用0.75 kg/m2秸秆密度、5 cm秸秆粒度、加水堆沤可有效降低径流和泥沙磷素流失浓度(2.82%~66.67%、0.38%~57.53%)及流失量(最高分别降低63.89%和64.74%);秸秆还田对各土层土壤总磷(TP)残留量的影响不同,总体上呈增加趋势;秸秆还田后,烤烟全磷(TP)含量的分布特征为叶>根>茎,1.50 kg/m2秸秆密度、1 cm秸秆粒度、水与尿素堆沤均可有效增加烤烟吸收TP含量(0.60%~49.76%)和土壤磷素盈余量(0.43%~13.97%)。【结论】秸秆堆沤还田可提高和维持红壤烤烟坡耕地土壤磷素水平,减少土壤磷素淋失,增强土壤供磷潜力,是削弱该流域农业非点源污染,综合利用秸秆资源,促进农业生态平衡发展的重要措施。  相似文献   

7.
    采用化学测试方法研究杭州市郊25个典型菜园土壤的磷素状况以及农学和环境磷素测试值间的相互关系,以建立磷素淋失的评价指标结果表明,菜园土壤全磷(TP)和土壤测试磷如水溶性磷(CaCl2-P)、速效磷(Olsen-P)、Mehlich Ⅲ提取的磷(PM3)均存在较大的变幅,分别为07~29 gkg-1、048~1964 mgkg-1、1065~15160 mgkg-1和5053~90495 mgkg-1,72%的土壤超过菜园土磷素丰缺的有效磷临界值(Olsen-P=60 mg·kg-1)草酸浸提的土壤磷饱和度(DPSox)和Mehlich Ⅲ浸提的土壤磷饱和度(DPSM3)分别在691%~4915%和582%~5256%之间,与TP、Olsen-P、PM3之间存在极显著的正相关,DPSox与DPSM3间存在极显著正相关通过分段线性模型分析水溶性磷与Olsen-P、DPSox和DPSm3的关系,均存在一个明显的突变点(土壤磷素淋失的临界值),该值分别为Olsen-P=7619 mg·kg-1,DPSox=26%,DPSM3=22%,供试土壤中超过上述Olsen-P或者DPS临界值的占60%以上,存在磷素淋溶的风险土壤磷素淋失的Olsen-P临界值高于农学磷素丰缺的临界值,因此,合理施用磷肥和有机肥使土壤磷水平低于上述磷素淋失临界值,不仅可以满足作物的磷素营养需要,而且可以避免磷淋溶进入水体  相似文献   

8.
种植年限对设施菜田土壤剖面磷素累积特征的影响   总被引:11,自引:2,他引:9  
以山东寿光集约化设施菜田为研究对象,分析了不同种植年限设施菜田土壤磷素投入和土壤磷素累积的差异,比较不同种植年限土壤剖面中无机磷、有机磷、Olsen-P和CaCl2-P含量的变化特征。结果表明:磷素过量积累是设施菜田的显著特征,主要由于有机肥以粪肥投入为主,复合肥中P素比例偏高,收获作物带走量仅占磷素投入的7.2%;随着种植年限增加,P素累积现象明显,过量的磷素盈余导致了土壤剖面中不同形态磷含量的上升,其中以无机磷尤其明显;用来表征土壤有效磷指标的Olsen-P与CaCl2-P有显著的相关性,研究区域中当土壤(Olsen-P)达到80.7mg·kg-1时,土壤CaCl2-P开始显著升高,增大了设施菜田磷素淋溶风险。  相似文献   

9.
秦岭北麓两种土地利用下土壤磷素淋溶风险预测   总被引:3,自引:2,他引:1  
鉴于猕猴桃、小麦-玉米轮作两种土地利用的施肥差异和磷素的环境风险,研究秦岭北麓两种利用方式下塿土磷素的淋溶风险与差异。测定两种利用耕层(0~20 cm)和剖面(0~100 cm)土壤Olsen-P、CaCl2-P含量,用耕层土壤Olsen-P、CaCl2-P作图预测磷素淋溶"突变点",分析两种利用方式土壤剖面CaCl2-P与Olsen-P含量的变化趋势和CaCl2-P的变化特征。得出猕猴桃园土壤磷素肥力较好,42.63%的果园土壤Olsen-P含量充足,达到丰产优质需求(60.90~79.60 mg·kg-1),96.43%的农田土壤Olsen-P含量低于大田作物高产适宜含量(20 mg·kg-1),平均值处于四级肥力水平。猕猴桃园磷素淋溶"突变点"对应的Olsen-P含量为40.11 mg·kg-1,有62.79%的果园土壤会发生磷素淋溶,淋溶风险较大;农田土壤磷素累积少,没有明显的淋溶"突变点",但多年的耕作使其也有微弱的淋溶发生。两种利用下土壤磷素的淋溶深度为40 cm,需要采取一些措施解决优质丰产与磷素环境风险的矛盾。  相似文献   

10.
福州市蔬菜地土壤磷淋失的“阈值”研究   总被引:2,自引:0,他引:2  
以福州郊区蔬菜地土壤为研究对象,通过室内模拟试验,研究6种不同土壤测试磷(Olsen-P、CaCI2-P、H2O-P、NaOH-P,Bray-P、有机磷)含量与磷素淋失之间的关系,探讨土壤磷素淋失风险评估的指标.结果表明,CaCI2-p、有机磷与淋洗液溶解总磷(DTP)的当次释放量及其累积量具有极显著的相关关系,可作为评价蔬菜地土壤磷淋失风险的指标,以DTP 0.05 nmg·L-1作为引起水体富营养化的临界值,获得本试验区域蔬菜地土壤磷素淋失的CaCl2-P、有机磷阀值分别为14.1 mg·kg-1和205.8 mg·kg-1;以Hesketh2000年提出的“突变点”方法预测土壤磷素淋失风险,得出本试验区域蔬菜地土壤磷发生淋溶的Olsen-P“突变点”为96.6 mg · kg-1·.  相似文献   

11.
【目的】分析长期不同施肥下土壤有效磷含量、全磷含量、土壤磷素盈亏和磷素活化效率(PAC)的动态变化,探讨不同施肥下水稻土磷素演变特征及与磷平衡的响应关系。【方法】基于1982年开始的红壤性水稻土长期不同施肥定位试验,试验包括不施肥(CK)、有机肥(牛粪,M)、氮磷钾肥(NPK)、氮磷钾肥+有机肥(NPKM)、氮磷肥+有机肥(NPM)、氮钾肥+有机肥(NKM)和磷钾肥+有机肥(PKM)共7个处理。【结果】经过30年不同施肥,土壤有效磷含量均呈上升趋势。M、NKM、NPK、NPM、NPKM和PKM处理土壤有效磷含量变化速率分别为0.18、0.20、0.83、1.35、1.46和1.62 mg·kg-1·a-1。M、NPK、PKM、NPM和NPKM处理土壤全磷增加速率分别约为4.3、15.4、16.0、18.3和22.9 mg·kg-1·a-1。所有施肥处理,土壤中磷素均有盈余,磷素盈余量与土壤有效磷增加量呈显著正相关关系(P<0.05),土壤中每盈余100 kg P·hm-2,M、NKM、NPM、NPKM、PKM和NPK6个处理的土壤有效磷含量分别增加0.4、0.7、1.9、2.1、2.2和3.2 mg·kg-1。在土壤中磷素盈余量接近的情况下,单施化肥(NPK)的PAC显著高于单施有机肥(M)处理(P<0.05)。【结论】化学磷肥和有机肥配施相比单施化肥或有机肥能够显著提高红壤性水稻土土壤有效磷、全磷含量和磷素活化效率。  相似文献   

12.
中国典型农田土壤磷素演化对长期单施氮肥的响应   总被引:6,自引:0,他引:6  
 【目的】探讨中国典型土壤长期单施氮肥对土壤全磷和Olsen-P磷的影响。【方法】以土壤肥力与肥料长期定位试验为基础,应用常规化学分析法和数学统计方法,分析不同气候、不同耕作制度下15年单施氮肥(每季作物的施氮量为150 kg?hm-2)处理对6种典型土壤全磷和Olsen-P含量变化的影响。【结果】在长期单施氮肥条件下,耕作土壤全磷含量和土壤Olsen-P均呈下降趋势,全磷含量下降幅度为2.7%~25.0%。单施氮肥全磷含量下降幅度大于不施肥。Olsen-P含量下降有一定阈值,阈值大约为4 mg?kg-1。土壤Olsen-P含量下降率比全磷高几倍。耕层Olsen-P含量(y)与土壤磷素表观平衡(x)相关方程为y=0.0005x+3.9986,相关方程斜率很小,表明Olsen-P含量基本不受磷素表观平衡影响。【结论】长期单施氮肥加速了土壤全磷和Olsen-P的减少速度,其中全磷含量较低的土壤其下降幅度更大。  相似文献   

13.
农田土壤磷素(P)累积使得农田土壤P淋溶风险增加,了解农田土壤P淋溶阈值并解析其主控因素对于合理控制农田土壤P保证农业生产同时减轻水体环境风险具有重要作用。选取我国分布较广的18个省共14种典型农田土壤,通过室内模拟试验测定了P淋溶阈值并探讨了土壤P淋溶阈值与土壤理化性质的关系,明确了影响P淋溶阈值的主控因素。结果表明:我国农田土壤P淋溶阈值差异很大,土壤有效磷(Olsen-P)含量为14.9~106.2 mg/kg。农田土壤P淋溶阈值随土壤pH值、交换性钙含量、无机碳含量、沙粒含量的增加而减小,随土壤阳离子交换量(CEC)、有机碳、活性铁铝含量、交换性镁含量、黏粒含量、土壤有效磷含量的增加而增大。利用土壤pH值、CEC、交换性镁含量、初始土壤有效磷含量等土壤性质参数能较好地预测不同类型农田土壤的P淋溶阈值。在一定程度上,土壤pH值可作为评估农田土壤P淋溶风险大小的有效指标。考虑到我国农田土壤pH值的分布状况,结合土壤背景值,北方农田土壤P淋溶风险大于南方农田土壤,更应加强土壤磷的管理。  相似文献   

14.
【目的】探讨南方赤红壤蔗区基于甘蔗产量与土壤磷素平衡的磷肥施用量,为该地区农田磷素高效利用与科学施磷提供参考依据。【方法】于2014—2016年在广西甘蔗主产区(南宁市武鸣区)布置田间定位试验,共设5个磷肥施用量水平,分别是0(P0)、75 kg P2O5·hm-2(P1)、150 kg P2O5·hm-2(P2)、300 kg P2O5·hm-2(P3)和 600 kg P2O5·hm-2(P4),连续3年测定甘蔗蔗茎、蔗叶产量和土壤Olsen-P含量,采用Mitscherlich模型拟合蔗茎产量对Olsen-P的响应曲线,计算土壤Olsen-P农学阈值,并分析植株磷含量,计算甘蔗吸磷量,磷肥利用率和磷素表观平衡状况。【结果】与P1处理相比,P2处理蔗茎产量显著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。蔗叶和地上部产量均以P2或P3处理最高,但不同施磷量间蔗茎、蔗叶和地上部产量整体无显著差异。P2—P4处理蔗茎磷累积量、蔗叶磷累积量和地上部磷累积量也相当。土壤Olsen-P含量、磷素表观平衡量和磷素盈余率均随施磷量的增加而显著增加,而磷素表观回收率和磷素偏生产力随施磷量的增加逐渐下降,以P1处理最高,显著高于P3和P4处理。Mitscherlich方程拟合获得Olsen-P农学阈值为13.4 mg·kg-1。相关分析表明,施磷量与磷素盈余率、磷素盈余率与土壤Olsen-P含量呈极显著的线性正相关关系(P小鱼0.01);磷素盈余率与甘蔗蔗茎产量呈极显著二次相关(P小鱼0.01),与磷素表观回收利用率、磷素偏生产力呈极显著指数相关(P小鱼0.01)。当施磷量为40.9 kg·hm-2时,磷素盈余率为0,土壤Olsen-P含量为15.87 mg·kg-1,甘蔗蔗茎产量为 94.2 t·hm-2。线性加平台拟合下的优化施磷量,土壤磷素盈余率为216.2%—232.7%,土壤Olsen-P含量为24.7—25.4 mg·kg-1,甘蔗蔗茎产量为99.7—100 t·hm-2。【结论】在Olsen-P含量较高的蔗区,40.9 kgP2O5·hm-2施用量能维持土壤磷素平衡,保持土壤适宜的Olsen-P含量,获得较高的产量与磷肥利用率,可以作为推荐的适宜施磷量。  相似文献   

15.
长期施肥紫色水稻土磷素累积与迁移特征   总被引:8,自引:1,他引:7  
【目的】探讨长期不同施肥对钙质紫色水稻土磷素累积与迁移的影响。【方法】以长期肥料定位试验不同施肥处理的土壤为研究对象,试验处理包括不施肥(CK)、氮肥(N)、氮磷肥(NP)、氮磷钾肥(NPK)、有机肥(M,鲜猪粪)、有机肥+氮肥(MN)、有机肥+氮磷肥(MNP)和有机肥+氮磷钾肥(MNPK)8种施肥方式,研究不同施肥处理条件下钙质紫色水稻土磷素平衡、累积和去向状况,以及不同施肥方式对耕层(0-20 cm)土壤全磷、有效磷演变规律及土壤剖面(0-100 cm)全磷、有效磷迁移特征。【结果】钙质紫色水稻土33年不施用磷肥(CK和N)作物籽粒和秸秆磷素携出总量为613.12 kg·hm-2,种苗、根茬、雨水及灌溉水带入土壤总磷量为106.61 kg·hm-2,长期不施用磷肥土壤磷素表现出亏缺状况,年亏缺量为15.35 kg·hm-2,且土壤磷含量随种植年限延续而下降,土壤全磷含量年均减少量为0.0011 g·kg-1、有效磷含量年均减少量为0.029 mg·kg-1;33年单施无机磷肥(NP和NPK)土壤磷素投入总量为1 880.03 kg·hm-2、作物携出磷量为1 275.40 kg·hm-2,有机肥处理(M和MN)土壤投入磷量为2 532.68 kg·hm-2、携出磷量为757.50 kg·hm-2;有机无机磷肥配施(MNP和MNPK)土壤投入和携出磷量分别为4 305.11和1 436.64 kg·hm-2;不同施肥处理土壤磷素投入量都明显高于作物携出量,导致单施无机磷肥、单施有机磷肥和有机无机磷肥配施处理土壤磷素年盈余量分别为18.32、53.79和86.92 kg·hm-2,年未知去向磷量分别为4.99、34.96和59.39 kg·hm-2,土壤全磷含量年增加量分别为0.015、0.0018和0.018 g·kg-1,有效磷含量年增加量分别为1.13、0.032和1.17 mg·kg-1。长期不施用磷肥钙质紫色水稻土全磷含量随土层深度增加而降低,土壤有效磷含量则相反;长期施用磷肥土壤全磷和有效磷含量在土壤剖面都呈现出上下层高、中间低的空间分布格局。施用无机磷肥土壤磷素可迁移至60-80 cm土层,施用有机磷肥或有机无机磷肥配施土壤磷素可迁移至100 cm以下;随着磷肥施用年限持续,土壤磷素迁移深度和迁移量将会更大,有机肥的施用促使磷素向土壤下层迁移。【结论】连续数年施用磷肥后,土壤磷含量达到一定水平时应考虑减少磷肥用量,减少因有机肥过量施用导致的磷素快速积累和淋失。  相似文献   

16.
添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响   总被引:1,自引:0,他引:1  
【目的】研究不同肥力水平红壤性水稻土氮素转化特征以及添加葡萄糖的影响,可为正确认识碳源影响氮素转化的作用机制、并根据不同土壤条件制定合理的氮素养分管理措施提供科学参考。【方法】选择不同肥力水平的红壤性水稻土,通过室内培育试验研究土壤氮素的矿化作用、硝化作用、反硝化作用特征以及添加葡萄糖对氮素转化作用的影响在不同肥力土壤间的差异。【结果】红壤性水稻土氮素矿化作用及反硝化作用强度均表现为高肥力中肥力低肥力。培养的第一周,高肥力红壤性水稻土氮素矿化量和反硝化速率分别是相应中、低肥力土壤的1.9、5.3倍和1.1、2.9倍。添加葡萄糖后土壤氮素矿化量显著降低,但不同肥力土壤降幅不同,高、中、低肥力土壤分别降低了78.8%、109.2%、177.4%,彼此间差异显著。添加葡萄糖对不同肥力土壤反硝化作用的影响亦不同,低肥力土壤反硝化速率提高了166.2%,中肥力土壤提高了14.4%,而高肥力土壤则没有明显变化。供试红壤性水稻培育试验一周后,土壤硝态氮含量最高仅有0.62mg·kg-1,硝化率最高仅为0.33%,添加葡萄糖处理土壤中硝态氮含量及硝化率没有明显变化。【结论】不同肥力水平红壤性水稻土氮素矿化作用及反硝化作用强度有显著差异,均随土壤有机质含量升高而增强。添加葡萄糖抑制了土壤氮素矿化作用,促进了反硝化作用,但作用效果在不同肥力土壤间有显著差异,在较低肥力土壤上的作用效果大于较高肥力土壤。添加葡萄糖和土壤有机质含量对红壤性水稻土硝化作用的影响均不明显。  相似文献   

17.
为探明腐植酸与磷肥施用方式对土壤磷素移动性和淋失量的影响,通过室内土柱淋溶试验,分别设计了不施肥(CK)、基施腐植酸钾追施/不追施磷肥(HA-P、HA)、基施磷肥追施/不追施腐植酸钾(P-HA、P)和磷肥腐植酸钾共同基施(P+HA)共6个处理,来探讨将腐植酸水溶性肥料中的主要原料腐植酸钾与磷肥按照不同施用方式施入土壤后对土壤磷素剖面迁移能力和淋出的影响。结果表明:在相同的灌溉条件下,HA-P处理显著增加了土壤磷素的淋出,分别比P-HA、P和P+HA 3个处理的磷素淋出总量高244.08%、78.51%和35.34%,而P-HA则显著降低了土壤磷素的淋出量;P+HA和P-HA处理土壤剖面的速效磷和全磷含量均随土层深度的增加而显著增加,与P处理结果相似,而HA-P处理剖面各层土壤的速效磷和全磷含量差异较小;HA处理会使土壤磷素淋出略有增加。研究表明,腐植酸钾与磷肥等量输入时,以腐植酸钾为基肥、磷溶液进行追肥的施用方式对土壤磷素移动的促进作用最大,有较高的淋失风险,而基施磷肥、追施腐植酸钾则可以显著控制土壤剖面磷素移动,降低土壤磷素的淋出量。  相似文献   

18.
水稻根际和非根际土磷酸酶活性对碳、磷添加的响应   总被引:9,自引:0,他引:9  
【目的】研究外源养分添加对稻田土壤磷酸酶活性影响的特征,明确水稻根际和非根际土壤胞外磷酸酶活性对碳、磷添加的响应过程,为稻田土壤水肥管理,实现农业可持续利用提供理论指导。【方法】选取湖南长期种植水稻的典型缺磷水稻土,进行盆栽试验。试验设置4个处理,分别为不添加碳磷(CK)、添加碳(C)、添加磷(P)和添加碳磷(CP)。采用96微孔荧光法测定根际土与非根际土的酸性磷酸酶(ACP)和碱性磷酸酶(ALP)活性,同时基于生物可利用性的磷分级方法(BBP法)测量4种磷组分(CaCl2-P、Citrate-P、Enzyme-P和HCl-P),探讨碳、磷添加对4种生物有效性的磷组分的影响和土壤磷酸酶活性的响应特征。【结果】与CK相比,C、P添加和CP配施处理水稻地上部分生物量分别增加29.76%、84.03%和87.94%(P<0.05),地下部分生物量分别减少20.13%、增加57.49%和56.53%(P<0.05);植物全磷(TP)含量与生物量变化规律一致,C、P和CP添加处理地上部分TP含量比CK分别增加57.23%、95.21%和95.91%(P<0.05),地下部分TP含量比CK分别减少26.12%、增加45.45%和38.01%(P<0.05)。根际土pH、NH4+-N和Olsen-P的含量低于非根际土,CP配施处理中根际土微生物量磷(MBP)含量高于非根际土;碳、磷添加对4种基于生物有效性磷组分具有显著调控作用(P<0.05);Olsen-P和MBP与ALP呈极显著负相关(P<0.05),与ACP无显著相关性,表明微生物对速效养分利用明显。冗余分析表明非根际土壤中的酶活性变化主要受Olsen-P、MBP、CaCl2-P和Citrate-P含量影响;而土壤中含水量、pH、NH4+-N、根系生物量、HCl-P和Enzyme-P含量主要影响水稻根际土壤中的酶活性。【结论】P和CP配施处理能提高缺磷水稻土微生物活性,显著增加水稻生物量,提升根际微生物效应,改善土壤环境,有利于稻田生态系统的健康。  相似文献   

19.
通过室内土柱淋溶实验,以0.5%的质量比向镉污染土壤中添加羟基磷灰石(HAP),考察p H值为3.5、4.5和5.6的模拟酸雨对土壤磷和镉释放的影响。结果表明:淋出液p H随着酸雨p H降低逐渐下降,HAP处理使淋出液p H较未处理土壤淋出液显著增加0.3~1.5个单位。淋出液总磷和正磷酸盐含量均随酸雨p H的降低而增加,且HAP处理显著增加了淋出液中总磷和正磷酸盐含量;总磷含量在第1~3 L和4~6 L分别是《地表水环境质量标准》(GB 3838—2002)五类水标准(总磷含量0.4 mg·L-1)的2.70~3.55倍和1.25~2.15倍,对地表水表现出较大的富营养化风险。较未处理土壤,HAP处理显著降低了淋出液中Cd含量,随酸雨p H降低,未处理土壤淋出液Cd含量逐渐增加,而HAP处理土壤淋出液Cd含量逐渐降低。因此,HAP能够显著减少酸雨淋溶对污染土壤中Cd的淋失,但需防止磷素释放造成地表水体富营养化。  相似文献   

20.
长期不同施肥红壤磷素变化及其对产量的影响   总被引:7,自引:0,他引:7  
目的 定量长期不同施肥红壤磷素的演变特征,研究红壤磷素变化对生产力的影响,为红壤地区磷素管理提供理论依据。方法 利用持续26年的红壤旱地长期定位试验平台(1991—2016年),比较长期不施磷肥(CK、N、NK)、施用化学磷肥(PK、NP、NPK)、化肥配合秸秆还田(NPKS)和化肥配施有机肥及有机肥(1.5NPKM、NPKM、M)土壤Olsen-P和全磷含量变化,分析土壤磷素对磷盈亏量的响应,采用不同模型拟合作物产量对有效磷的响应曲线,计算土壤有效磷农学阈值。结果 长期施用磷肥显著提高了土壤全磷和有效磷含量,提升了土壤磷素活化系数(PAC)。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的PAC高于化肥配合秸秆还田(NPKS)和施用化学磷肥(PK、NP、NPK)。红壤地区土壤全磷和有效磷变化量与土壤磷盈亏量呈正相关关系(P<0.01),土壤每累积盈余100 kg P·hm -2,土壤Olsen-P含量上升3.00—5.22 mg·kg -1,全磷上升0.02—0.06 g·kg -1。土壤每累积亏缺磷100 kg P·hm -2,不施磷肥处理(CK、N、NK)土壤Olsen-P分别下降1.85、0.40、1.76 mg·kg -1。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的小麦和玉米产量显著高于化肥配合秸秆还田(NPKS)以及施用化学磷肥(PK、NP、NPK),显著高于不施磷肥(CK、NK、N)。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的产量可持续指数也高于其他处理。3种模型(线性-线性模型、线性-平台模型和米切里西方程)均能较好地拟合作物产量与红壤有效磷含量的响应关系(P<0.01)。在红壤地区推荐使用拟合度较好的线性-线性模型,其计算出小麦和玉米的土壤Olsen-P农学阈值分别为13.5和23.4 mg·kg -1结论 在南方红壤地区,化肥配施有机肥更有利于磷素累积和提升磷素有效性。化肥配施有机肥作物产量显著高于其他处理,且稳产性好。线性-线性模型可用于计算红壤地区有效磷的农学阈值。生产上应该根据土壤有效磷含量及其农学阈值调整磷肥施用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号