首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Crop Science and Biotechnology - Barley is one of the most important cereal crops cultivated over a wider environment in the diverse agro-ecologies in Ethiopia. Study on genotype by...  相似文献   

2.
Evaluation of genotype × environment interaction (GEI) is an important component of the variety selection process in multi-environment trials. The objectives of this study were first to analyze GEI on seed yield of 18 spine safflower genotypes grown for three consecutive seasons (2008–2011) at three locations, representative of rainfed winter safflower growing areas of Iran, by the additive main effects and multiplicative interaction (AMMI) model, and second to compare AMMI-derived stability statistics with several stability different methods, and two stability analysis approaches the yield-stability (Ysi) and the GGE (genotype + genotype × environment) biplot that are widely used to identify high-yielding and stable genotypes. The results of the AMMI analysis showed that main effects due to genotype, environment, and GEI as well as first six interaction principle component axes (IPCA1 to 6) were significant (P < 0.01). According to most stability statistics of AMMI analyses, genotypes G5 and G14 were the most stable genotypes across environments. According to the adjusted stability variance (s2), the high-yielding genotype, G2, was unstable due to the heterogeneity caused by environmental index. Based on the definition of stable genotypes by regression method (b = 1, S d 2  = 0), genotypes G11, G9, G14, G3, G12 and G13 had average stability for seed yield. Stability parameters of Tai indicated that genotype G5 had specific adaptability to unfavorable environments. The GGE biplot and the Ysi statistic gave similar results in identifying genotype G2 (PI-209295) as the best one to release for rainfed conditions of Iran. The factor analysis was used for grouping all stability parameters. The first factor separated static and dynamic concepts of stability, in which the Ysi and GGED (i.e., the distance from the markers of individual genotypes to the ideal genotype) parameters had a dynamic concept of stability, and the other remaining parameters had static concept of stability.  相似文献   

3.
Reza Mohammadi  Ahmed Amri 《Euphytica》2013,192(2):227-249
The genotype × environment (GE) interaction influences genotype selection and recommendations. Consequently, the objectives of genetic improvement should include obtaining genotypes with high potential yield and stability in unpredictable conditions. The GE interaction and genetic improvement for grain yield and yield stability was studied for 11 durum breeding lines, selected from Iran/ICARDA joint program, and compared to current checks (i.e., one durum modern cultivar and two durum and bread wheat landraces). The genotypes were grown in three rainfed research stations, representative of major rainfed durum wheat-growing areas, during 2005–09 cropping seasons in Iran. The additive main effect and multiplicative interaction (AMMI) analysis, genotype plus GE (GGE) biplot analysis, joint regression analysis (JRA) (b and S2di), six stability parameters derived from AMMI model, two Kang’s parameters [i.e., yield-stability (YSi) statistic and rank-sum], GGE distance (mean performance + stability evaluation), and two adaptability parameters [i.e., TOP (proportion of environments in which a genotype ranked in the top third) and percentage of adaptability (Ad)] were used to analyze GE interaction in rainfed durum multi-environment trials data. The main objectives were to (i) evaluate changes in adaptation and yield stability of the durum breeding lines compared to modern cultivar and landraces (ii) document genetic improvement in grain yield and analyze associated changes in yield stability of breeding lines compared to checks and (iii) to analyze rank correlation among GGE biplot, AMMI analysis and JRA in ranking of genotypes for yield, stability and yield-stability. The results showed that the effects due to environments, genotypes and GE interaction were significant (P < 0.01), suggesting differential responses of the genotypes and the need for stability analysis. The overall yield was 2,270 kg ha?1 for breeding lines and modern cultivar versus 2,041 kg ha?1 for landraces representing 11.2 % increase in yield. Positive genetic gains for grain yield in warm and moderate locations compared to cold location suggests continuing the evaluation of the breeding material in warm and moderate conditions. According to Spearman’s rank correlation analysis, two types of associations were found between the stability parameters: the first type included the AMMI stability parameters and joint regression parameters which were related to static stability and ranked the genotypes in similar fashion, whereas the second type consisted of the rank-sum, YSi, TOP, Ad and GGED which are related to dynamic concept of stability. Rank correlations among statistical methods for: (i) stability ranged between 0.27 and 0.97 (P < 0.01), was the least between AMMI and GGE biplot, and highest for AMMI and JRA and (ii) yield-stability varied from 0.22 (between GGE and JRA) to 0.44 (between JRA and AMMI). Breeding lines G8 (Stj3//Bcr/Lks4), G10 (Ossl-1/Stj-5) and G12 (modern cultivar) were the best genotypes in terms of both nominal yield and stability, indicating that selecting for improved yield potential may increase yield in a wide range of environments. The increase in adaptation, yield potential and stability of breeding lines has been reached due to gradual accumulation of favorable genes through targeted crosses, robust shuttle breeding and multi-locational testing.  相似文献   

4.
5.
Capitalizing on the yield potential in available groundnut germplasm, and high stability of kernel yield are important requirements for groundnut producers in semiarid environments. Forty-seven groundnut genotypes were evaluated from 2003 to 2005 at 4 locations representative of the Guinea and Sudan savanna ecologies in Ghana. The objectives were to assess genotypic differences in reaction to early and late leaf spot infections under natural field conditions, assess the extent of genotype × environment (G × E) interaction for kernel yield, and determine the relationship between yield potential and yield stability. Genotypes differed significantly in their reaction to leaf spot infections indicated by the area under disease progress curve (AUDPC). Genotypic AUDPC was negatively correlated with maturity period (P < 0.01), with kernel yield (P < 0.05) at each of the 3 locations in the Guinea savanna ecology but not in the Sudan savanna ecology and with each of four stability parameters (P < 0.05). High or low yielding genotypes were grouped based on Dunnett’s test at P < 0.10. High yielding groups had significantly low AUDPC, high biomass, high partitioning of dry matter for kernel growth, and were later in maturity compared to low yielding genotypes. Significant G × E interaction effect for kernel yield was dominated mainly by the lack of correlation among environments variance (76–78%) relative to the heterogeneity of genotypic variance component (22–24%). Stability of yield assessed through the among-environment variance, Wricke’s ecovalence, and Finlay-Wilkinson regression coefficient revealed that genotypes in the higher yielding group were relatively unstable compared to the low yielding group. Indicated by the Kataoka’s index of yield reliability, however, relatively unstable genotypes in the high yielding group are expected to be more productive even under assumptions of high risk aversion (P = 0.75–0.95) compared to the more stable, low yielding genotypes. The findings indicate that deploying these recently developed germplasm in semiarid regions in West Africa provides a better match to farmers’ risk-averse strategies compared with the use of existing earlier maturing cultivars.  相似文献   

6.
Cowpea is an important grain legume crop in Africa. Cowpea flowers are capable of self-fertilization, which might be the most frequent type of reproduction. Nevertheless, the rate of cross-pollination could vary between 1% and 10%, depending on the populations of bumblebees or domestic bees that are present, the climate and the cultivar. The aim of this study was to identify and assess the efficiency rate of the pollinators of the wild cowpea, Vigna unguiculata subsp. unguiculata var. spontanea, the progenitor of the domesticated cowpea Vigna unguiculata subsp. unguiculata. Pollination study was conducted by observing patches of flowers (average 10–20/m2) from dawn to midday, approximately 05:00–12:30 hr for three years. All insects visiting the flowers were noted and identified to species level, where possible, and their foraging behaviour was monitored. Pollen grain deposit and pod set were estimated using single bee visits on plants with strictly outcrossing flowers. Major flower visitors were large bees of the family Megachilidae and the genus Xylocopa (Apidae, Xylocopinae). Xylocopa caffra (Linnaeus) was the most abundant bee species, accounting for 59% of total bees observed and 58% of total flower visited. Pod set was higher in visits by megachilid bees compared to Xylocopa bees. Within Xylocopa, there is a good correlation between size and efficiency (r = .95, p = .0477), the larger insects being more efficient. Honeybees, small bees (Ceratina and Nomia species) and Lepidopterans also visited flowers but without any effect on pollination. Cowpea pollination system is specialized, and pollinators are restricted to Megachilidae and Xylocopa species. Variation in pollen load deposit and pod set reveals that pollination success depends on the insect species involved and their size. Megachilids are the most efficient pollinators, especially since they are able to promote outcrossing more efficiently than Xylocopa species.  相似文献   

7.
Journal of Crop Science and Biotechnology - Agronomic performance of Robusta coffee (Coffea canephora) is affected by genotype by environment interaction, which demands multi-environment testing of...  相似文献   

8.
9.
Partitioning of the genotypes by environment interaction (GEI) is important in order to determine the nature of the GEI. The objectives of this study were to assess the presence and nature of GEI for nine agronomic traits of rapeseed cultivars, and to identify cultivars with favorable levels of stable oil production. Nine rapeseed cultivars, including seven open pollinated and two hybrids, Hyola308 and Hyola401, were grown in ten environments under rain-fed warm areas of Iran. The GEI was significant for all traits and was partitioned into components representing heterogeneity due to environmental index and the remainder of the GEI. Among the all traits with a highly significant heterogeneity, the largest amount of heterogeneity removed from the GEI was for seeds per pod and seed weight. We found GEIs for both oil content and seed yield were largely influenced by differences in correlations among pairs of cultivars (86.8 and 71.4% of the GEI sum of squares, respectively), suggesting that crossover GEIs (i.e., change in genotype rankings among environments) are present. The mean correlation of each cultivar with all other cultivars ([`(r)]ii \bar{r}_{{ii^{\prime}}} ) ranged from 0.53 to 0.83 for oil content and 0.86 to 0.96 for seed yield. A comparison was done of the significance of Sh-σi2 (stability variance derived from total GEI) and Sh-Si2 (adjusted stability variance derived from residual GEI) assignable to each genotype for oil content and seed and oil yield. Based on Sh-σi2, three cultivars were unstable for oil content, whereas six cultivars were unstable for seed and oil yield. The removal of heterogeneity revealed that one unstable cultivar for oil content and three unstable cultivars for oil yield were judged to be stable. All cultivars with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.63 were labeled unstable for oil content, whereas all with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.94 were considered unstable for seed yield. The relationships between [`(r)]ii \bar{r}_{{ii^{\prime } }} and Sh-σi2 were significant (P < 0.01) for oil content and seed yield. The results of rank correlation coefficients showed significant positive correlations of Yield-Stability statistic (YSi) with oil content and oil yield. Cultivars such as Option500 and Hyola401 were identified as having stable, high levels to seed yield and oil content.  相似文献   

10.
Jianguo Chen  Jun Zhu 《Euphytica》1999,109(1):9-15
Indica-japonica hybridization is an important approach for developing superior performing hybrids in rice (Oryza sativa L.). In view of the scanty information available on cooking quality characters in indica-japonica crosses, an investigation was undertaken to estimate genetic and genotype × environment variance and covariance components of amylose content, gel consistency and alkali digestion value, and to determine the relative importance of direct genetic effects, maternal genetic effects and cytoplasmic effects in the genetic variations of the three quality characters. Two indica photo-sensitive genic male sterile (PGMS) lines and four japonica varieties were used as parents to make crosses. Genetic model with genotype × environment interactions for triploid endosperm was used for genetic studies of the three cooking quality characters. Variance component analysis revealed that genetic variations of the three characters were mainly attributable to direct additive and maternal additive effects, and the three traits had significant direct and maternal heritabilities. Genotype × environment interactions were mainly dominance × environment (including direct dominance × environment and maternal dominance × environment) and cytoplasm × environment interactions. Environment factors could only affect the expression extent of dominant genes, without changing their directions. Predicted values of genetic effects indicated that the parental lines, ‘VI-70’ and ‘H9304-1’, appeared to be best for amylose content, ‘T 1950’ and ‘Suxuan’ appeared to be best for gel consistency and alkali digestion value. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Journal of Crop Science and Biotechnology - Extra-early-quality protein maize with short maturity period has potential of alleviating protein deficiency and fostering food security among vulnerable...  相似文献   

12.
Summary The standard root-ball test for assessing quantitative resistance of Globodera pallida in host material derived from Solanum vernei has produced variable results. This study of two sets of clones shows that genotype x environment interactions are responsible and that linear regressions (b) of phenotypic means on environments may enable good predictions to be made of the effects of the interactions. A relationship between the regression value (b) and phenotypic mean is shown for this material. The implication of this for a screening procedure in a potato breeding programme aimed at increasing potato cyst nematode resistance in adapted cultivars of S. tuberosum is discussed.  相似文献   

13.
The aim of this study was to investigate long-term genetic trends and the genetic architecture of grain yield, seed characteristics and correlated agronomic traits in triticale. Therefore, a panel of 846 diverse triticale genotypes was assessed for three agronomic and three seed shape- and size-related traits. We observed a high genotypic variation and a high heritability for all traits. Analysing the development of these traits during the last decades revealed a continuous increase for grain yield and thousand-kernel weight, and a slight increase in seed width. The seed characteristics and thousand-kernel weight formed a complex of highly positive correlated traits. Genome-wide association mapping revealed many small-effect QTL and a few moderate-effect QTL. The allele frequencies of the moderate-effect QTL followed the same temporal trends as observed for the phenotype. In line with the phenotypic correlations, we identified several pleiotropic QTL for grain yield, thousand-kernel weight, seed width and seed area. Our results illustrate the continuous progress achieved in triticale breeding and suggest that triticale seeds have been selected to be more spherical in modern cultivars.  相似文献   

14.
[Objective] The aim of this study is to study the hereditary of heterosis of fiber quality and yield-related traits in the upland-island interspecific hybrids, and breed new interspecific hybrid varieties with high yield and fine fiber quality. [Method] In this study, 12 upland cotton materials and 5 sea-island cotton materials were selected to determine the fiber quality and yield traits of their parents and F1 in Lin’an, Zhejiang and Sanya, Hainan. [Result] It was found that fiber length and fiber strength of F1 (Gossypium hirsutum × G. barbadense) generally had significant mid-parent heterosis (MPH), some hybrid combinations showed strong over-parent heterosis (OPH), fiber length had a small coefficient of variation between the two places and could be stably inherited. And in terms of yield, seed cotton weight, lint weight, and lint percentage of some upland-island hybrids had MPH, but they were still significantly lower than those of upland cotton parents. [Conclusion] Two long-staple cotton hybrid combinations T035 and T044 with 5A grade high-quality were obtained, and an excellent material of G. barbadense Ta10-280 was screened. This study provides valuable data for the genetic law of fiber quality heterosis of upland-island hybrid cotton.  相似文献   

15.
In the present study, quantitative trait loci (QTLs) controlling seed storability based on relative germination rate (%) were dissected using a saturated linkage map and a recombinant inbred lines (RILs) derived from a cross of japonica cultivar Asominori (Oryza sativa L.) and indica cultivar IR24 (Oryza sativa L.). A total of three QTLs (qRGR-1, qRGR-3 and qRGR-9) were detected on chromosomes 1, 3 and 9 with LOD score ranging from 3.45 to 6.95 and the phenotypic variance explained from 16.72% to 28.63%. The IR24 alleles were all associated with seed storability at all the three QTLs. The existence of these QTLs was confirmed using IR24 chromosome segment substitution lines (CSSLs) in Asominori genetic background (AIS). By QTL comparative analysis, the QTL, qRGR-9 on chromosomes 9 appeared to be consistent with another rice population, this region may provide an important region for isolating this responsible gene. These results also provide the possibilities of enhancing Seed storability in rice breeding program by marker-assisted selection (MAS) and pyramiding QTLs. Y. Xue and S. Q. Zhang—joint first authors.  相似文献   

16.
Tipburn is a calcium related and environmentally induced physiological disorder causing economic damage in all lettuce (Lactuca sativa L.) production regions. The objectives of this research were to determine (1) the genetic variation for tipburn incidence, (2) the genotype (G) × environment (E) interaction (GE) for tipburn incidence, and (3) the efficiency of field selection for tipburn resistance. Tipburn incidence was recorded over 2 years in Salinas, CA, and Yuma, AZ, for 55 romaine, crisphead, green leaf, and red leaf type cultivars, and over 3 years in Quebec for 15 romaine cultivars. Analysis revealed that G, E, and GE affected tipburn incidence, including crossover interactions that were not repeatable over years. This indicates that cultivar/breeding line evaluations should be based on mean performance and stability over multiple environments. Among lettuce types, only crisphead had significant genetic variability for tipburn resistance, reflecting the greater breeding effort applied to this type compared romaine, green and red leaf types. Analysis of a dataset with five romaine cultivars in eight environments in California, Arizona, and Quebec for 2 years revealed that Yuma in 2006 and Saint-Blaise in 2005 were highly correlated (r = 0.923, P < 0.05), and were the most discriminating and most representative environments for tipburn evaluation. Single plant selection for tipburn resistance in three F2 romaine populations was ineffective. Further, the degree of head closure was significantly associated with tipburn incidence. Identification and selection of morphological characters associated with resistance in conjunction with direct selection against tipburn may be an effective method for genetic improvement of tipburn resistance.  相似文献   

17.
Ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) are two Capsicum pepper species native to the Andean region that have not been subjected to intensive breeding. However, the increase in its demand in European markets has sparked the development of breeding programmes for adaptation to Mediterranean climates, which include breeding for higher levels of bioactive compounds. We have studied the composition of red and yellow carotenoids (C R and C Y, respectively), ascorbic acid (AA), and total phenolics (TP) in 34 accessions of Capsicum, including 23 of C. baccatum, eight of C. pubescens, and 3 controls of C. annuum, which were grown in Spain both under greenhouse (GH) and open field (OF) conditions. The results show that in both growing conditions C. baccatum presents a considerable variation for most of the traits studied, with several accessions having similar or higher levels than C. annuum for the compounds studied. This indicates that C. baccatum is an important source of antioxidant compounds with nutritional value. On the contrary, C. pubescens had a poor performance, with low levels for all the compounds studied, and a poor adaptation to the conditions of Mediterranean climates. When considering the GH or OF growing cycles separately, heritability values were high (>0.75) for C R, C Y and AA, and moderate (0.42 for GH and 0.62 for OF) for TP. The existence of an important genotype × environment interaction resulted in lower levels for heritability when considering both growing cycles together, although the values were still high for C R and AA (>0.6). Positive significant genotypic correlations among all the traits studied were found, except for TP with C R and AA in the OF cycle. This information indicates that there are good prospects for developing C. baccatum varieties with higher levels of bioactive compounds.  相似文献   

18.
Safflower (Carthamus tinctorius L.) seeds contain a high proportion of tocopherols (>90 %) in the α-tocopherol form. A mutant with a high concentration of γ-tocopherol (>85 %) was identified in germplasm of wild safflower (Carthamus oxyacanthus M. Bieb.) that showed strong introgression of C. tinctorius, which allowed selection of individuals of both species with high concentrations of either α- or γ-tocopherol. The trait is controlled by a γ-tocopherol methyltransferase (γ-TMT) locus. The objective of this research was to identify γ-TMT sequence mutations associated with the high γ-tocopherol trait. Full length genomic and cDNA sequences of the γ-TMT gene were obtained from plants of C. tinctorius and C. oxyacanthus with both tocopherol profiles. Sequences from high γ-tocopherol plants showed an 11 bp deletion in exon 6 of the γ-TMT gene that disrupted the reading frame and created a premature stop codon, resulting in a predicted protein with a drastically altered amino acid sequence downstream the frameshift site. The data suggested that the frameshift mutation was underlying the γ-TMT loss of function mutant allele that determines the high γ-tocopherol phenotype. The characterized sequence change of 11 bp deletion could be used directly as a functional marker for introgression of the high γ-tocopherol trait into elite safflower cultivars.  相似文献   

19.
The main objective of this research was the evaluation of the variability present in a segregating wine grape population derived from a cross between Graciano × Tempranillo, two Spanish varieties, in order to select improved genotypes with potential for producing high-quality wines in a climate change scenario. For that purpose, the phenotypic segregation of 16 agronomic traits related to production and phenology and 11 enological traits related to technical and phenolic maturity was studied in the progeny for three consecutive years. All traits presented transgressive segregation and continuous variation. Year effect was significant for all traits except total, extractable and skin anthocyanins content. However, a high level of genotype consistency for enological traits was revealed by repeatabilities and correlations between years. Significant correlations among traits were observed but most associations were weak. Furthermore, the CAPS (Cleaved Amplified Polymorphic Sequence) marker for the VvmybA genotype was tested to determine whether it would be useful in indirect selection for berry anthocyanins content. The results showed that the number of homozygous and heterozygous genotypes for the functional colour allele adjusted to a 1:1 segregation ratio, and that homozygous genotypes had significantly higher anthocyanins content. Principal component analysis found eight variables that contributed up to 80 % of the phenotypic variability present in the population. Seven groups of hybrids were distinguished based on ripening time, cluster weight, berry weight and anthocyanins content by cluster analysis; and fourteen genotypes were pre-selected for further research.  相似文献   

20.
Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号