首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since its detection in 1998, the exotic aphid pest, Essigella californica Essig (Hemiptera: Aphididae) has caused extensive defoliation in commercial Pinus radiata plantations throughout Australia. A total of one hundred and twenty plots encompassing thirty tree ages, and three thinning treatments were established in September 2006 in southern New South Wales, Australia to assess crown health and tree growth. Assessments were carried out annually during 2006-2009 to quantify the relationship between natural aphid-induced defoliation and growth loss at the individual tree level. Over the course of the four years, particularly in 2006, trees were subjected to moisture stress, as indicated by average annual rainfalls that were below the long-term average. In general, the diameter growth of individual trees appeared unaffected by crown damage severity across most tree ages, indicating that the productivity in Green Hills was limited by the interactive effects of climatic and biotic stressors (both cause premature loss of foliage). Furthermore, the results from this four-year experiment demonstrated that both moisture stress and aphid-induced defoliation constrained the growth response to thinning. However, thinning may have assisted damaged trees to maintain growth rates similar to trees with little or no damage. Understanding the impact of disturbances such as insect pest outbreaks on growth yield models is critical for optimal modelling of long-term plantation growth and management. Our results highlight the difficulty in quantifying the effect of aphid-induced defoliation when combined with chronic moisture stress.  相似文献   

2.
The study was made to assess the relationship between visually estimated defoliation class and a number of other variables depicting the vitality of Norway spruce (n=50). Variables characterizing crown size and condition were determined on the standing trees. Electrical impedance (an indication of the physiological status of a tree) was measured in the inner bark tissue of the living trees. Shoot growth and needle variables were determined from the detached sample branches. Negative correlations were found between defoliation class and the growth parameters (5‐year height, radial and volume growth of the trunk). Positive correlations were observed between the needle loss class and the abundance of branch damage, secondary shoots and impedance values. 18 variables (defoliation excluded) describing tree size and vitality were summarized in a factor analysis incorporating 5 factors. These were interpreted as 1) vitality, 2) foliage discoloration, 3) tree size, 4) needle number and 5) needle size factors. The tree‐specific score values for the first factor were interpreted as “vitality indices”;. The rank correlation between these score values and defoliation degree was 0.835. This result suggests that the defoliation class and vitality parameters contributing to the first factor give a consistent estimate of the tree condition.  相似文献   

3.
In recent years unusual high mortality of Scots pine (Pinus sylvestris) has been observed in the Swiss Rhone Valley. The exact causes, however, are not known. At a 2‐ha monitoring plot, tree mortality and crown condition have been monitored since 1996. Between 1996 and 2004, 59% of the Scots pines died, most of them following the drought periods 1996–1998 and 2003–2004, while only 15% of the deciduous trees died. Crown transparency, needle discolouration, dead branch percentage, mistletoe (Viscum album ssp. austriacum) rating, Tomicus sp. shoot feeding, male flowering effect, tree stem diameter, crown shading and social tree class assessed in 1998 were used in a logistic regression model to predict tree mortality. Crown transparency, mistletoe rating and percentage of dead branches were found significant in the model and the probability of tree mortality increased with increasing rankings of these parameters. Needle discolouration could be used to substitute ‘dead branch percentage’ as predictor. While crown transparency increased with mistletoe rating, for trees in the same transparency class, trees with medium and heavy mistletoe infection were two to four times more likely to die than trees with no or only low mistletoe infection. For the surviving trees we found that trees with mistletoes showed a significantly higher increase in transparency in the year following a drought than trees without, while in a drought year the opposite was true. At the beginning of the observations no significant differences in transparency had been found between the trees with and without mistletoe. However, by the end of the observation period trees with mistletoe had significantly higher crown transparency. We conclude that mistletoe infection can be considered as both a predisposing factor for tree death, by increasing needle loss following drought and a contributing factor by increasing water stress during drought.  相似文献   

4.
Summer drought, i.e. unusually dry and warm weather, has been a significant stress factor for Norway spruce in southeast Norway during the 14 years of forest monitoring. Dry and warm summers were followed by increases in defoliation, discolouration of foliage, cone formation and mortality. The causal mechanisms are discussed. Most likely, the defoliation resulted from increased needle‐fall in the autumn after dry summers. During the monitoring period 1988–2001, southeast Norway was repeatedly affected by summer drought, in particular, in the early 1990s. The dataset comprised 455 ‘Forest officers’ plots’ with annual data on crown condition and mortality. Linear mixed models were used for estimation and hypothesis testing, including a variance–covariance structure for the handling of random effects and temporal autocorrelation.  相似文献   

5.
The phloem-feeding aphid Essigella californica represents a potential threat to the productivity of Pinus radiata plantations in south-eastern Australia. Five- and nine-year-old field trials were used to characterize the effects of artificial and natural aphid-induced (E. californica) defoliation, respectively, on shoot photosynthesis and growth. Photosynthetic capacity (A(max)) was significantly greater following a 25% (D25) (13.8 μmol m(-2) s(-1)) and a 50% (D50) (15.9 μmol m(-2) s(-1)) single-event upper-crown artificial defoliation, 3 weeks after defoliation than in undefoliated control trees (12.9 μmol m(-2) s(-1)). This response was consistently observed for up to 11 weeks after the defoliation event; by Week 16, there was no difference in A(max) between control and defoliated trees. In the D50 treatment, this increased A(max) was not sufficient to fully compensate for the foliage loss as evidenced by the reduced diameter increment (by 15%) in defoliated trees 36 weeks after defoliation. In contrast, diameter increment of trees in the D25 treatment was unaffected by defoliation. The A(max) of trees experiencing upper-crown defoliation by natural and repeated E. californica infestations varied, depending on host genotype. Despite clear differences in defoliation levels between resistant and susceptible genotypes (17 vs. 35% of tree crown defoliated, respectively), growth of susceptible genotypes was not significantly different from that of resistant genotypes. The observed increases in A(max) in the lower crown of the canopy following attack suggested that susceptible genotypes were able to partly compensate for the loss of foliage by compensatory photosynthesis. The capacity of P. radiata to regulate photosynthesis in response to natural aphid-induced defoliation provides evidence that the impact of E. californica attack on stem growth will be less than expected, at least for up to 35% defoliation.  相似文献   

6.
We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.  相似文献   

7.
We built a simple tree growth model for Norway spruce (Picea abies (L.) Karst.) that describes the biomass and stem radial growth of one tree in a stand. Growth is controlled by an external height growth function that accounts for site quality. Crown recession is represented by an empirical function that accounts for the limitation to crown development caused by mechanical contacts with neighboring trees. The model describes biomass growth based on carbon budget (photosynthesis, respiration and senescence) and carbon partitioning between foliage, stem and root compartments. An internal regulation is introduced based on a functional balance between crown and root development. Stem annual growth is distributed along the stem by means of an empirical rule. Stem profile is the final output of the model and can be used to check the overall consistency of the model and as an aid in wood quality studies. The underlying assumptions of the model are described.  相似文献   

8.
Climate change in Central Europe may come along with acute drought stress, which can severely reduce growth and vitality of forest trees and whole stands. For a tree species such as Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) which is cultivated far beyond its natural range in Europe, knowledge of its behaviour under stress is crucial for the cultivation of Douglas-fir in view of a changing climate. Because of its easy accessibility, growth response to stress was mainly studied based on diameter growth at breast height. In long-term experiments on one dry and one moist site in Southern Germany, stem analyses of 133 mature and even-aged Douglas-firs were performed. The short-term growth reaction pattern under acute drought stress of 2003 had not only consequences on diameter but more pronounced effects can be observed when studying tree height: Respecting the different age trends by previous detrending, height increment only reacted more sensitive on the dry site. We also showed that extrapolating a particular decline in basal area increment to the whole stem can result in misunderstandings. However, results were less biased, when original data were smoothed or short-term assessment of volume growth was based on basal area measurements. By means of a linear mixed model approach, the influence of site, tree, and stand characteristics on Lloret’s indices of resistance and resilience (Lloret et al. in Oikos 120:1909–1920. doi:10.1111/j.1600-0706.2011.19372.x, 2011) were analysed. For Douglas-fir, site played a crucial role and became more important considering the age trend. On the contrary, the positive influence of site quality on drought tolerance decreased with data processing. However, more growing space by thinning can advance tree resistance and resilience regarding height, diameter, and volume growth. Large individual crown volume improved the growth pattern under drought, and large stand density impaired it. Douglas-fir is obviously equipped with a morphological variability, which fosters lateral rather than vertical growth allocation under severe stress. Silviculture can mitigate stress through the choice of the site and through lower stand densities by thinning. Our refined stress response analysis confirmed a favourable growth and resilience of Douglas-fir even under extreme drought events.  相似文献   

9.
Crown transparency estimates of Scots pine, Norway spruce, common beech, pedunculate and sessile oak, annually surveyed between 1990 and 2004 within a grid over Germany, provide a suitable response variable to study drought effects on forest trees. Major climatic factors, available on a monthly basis as plot-specifically interpolated values and parameters of site and stand conditions, biotic and other relevant factors were used as predictors in different cross- and length-sectional, and longitudinal models. Stand age is a considerable and most constant driver of crown transparency in all species. Pine, spruce and beech responded—mainly with a delay of 1 year—with some foliar loss in areas where there was a surplus of temperature after the generally hot and dry summer of 2003. Parallel time-series analyses delivered species-specific geographic large-scale patterns with delayed or recent precipitation deficits or temperature surpluses. Even if beech is partly responding in current years with leaf loss towards precipitation surpluses, defoliation is especially high 1 year after hot summers, partly a result of high seed sets after such summers. Crown condition of oak responds in dry and warm areas according to the drought stress hypothesis, however, in cool and wet mountainous ranges oak responds after wet summers with higher defoliation. Longitudinal approaches revealed for all 4-tree species significant relationships between crown condition and deviations from the long-term means of temperature, precipitation but also global radiation and wind speed. Results do not always match the drought stress hypothesis, however, this is not to expect considering the heterogeneous site, stand and climatic conditions across Germany. Complex interactions of climatic and biotic factors also impede simple relationships. Soil-related clusters reveal higher sensitivity of spruce and beech towards climatic drought factors on more acid soils with thin humus layers. Also clusters constructed from plot-specific courses of defoliation reveal groups with rather closer relationships like a group of pine plots in the Oberpfalz, which seems to be especially sensitive to summer drought.  相似文献   

10.
Defoliation of conifers occasionally precedes bark beetle attacks, suggesting that a severe loss of foliage and ensuing reductions in carbohydrate availability may enhance host tree susceptibility. To shed light on this question, different degrees of defoliation on young Picea abies were simulated by removing whole whorls of branches from below, the trees retaining 100, 50, or 25% of their original crown biomass. After one week or one year, the trees were inoculated with Ophiostoma polonkum, a tree‐killing fungus transmitted by Ips typographus.

Fungal proliferation and tree mortality increased with increasing levels of pruning. Pruning reduced stem diameter growth, but not carbohydrate reserves in foliage and bark. Foliar N, P, and Ca increased with increasing pruning. The results lend support to the hypothesis that a reduction in the photosynthesis capacity increases host tree susceptibility to a beetle‐fungus attack, and that induced defence against infection depends on efficient translocation of assimilates to the sites of infection.  相似文献   

11.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

12.
Chen Z  Kolb TE  Clancy KM 《Tree physiology》2001,21(16):1159-1169
We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.  相似文献   

13.

Tree mortality and growth losses following insect defoliation are poorly documented in Scandinavia. In 1990-1991, Diprion pini (L.) caused extensive defoliation to Scots pine in Lauhanvuori national park and surrounding areas in south-western Finland. Most trees lost all their foliage in 1990. In 1991, the outbreak area was sprayed with diflubenzuron (Dimilin®), except in the national park, where trees were severely defoliated again. No further defoliation occurred in 1992. In spring 1993, sprayed trees had ca 30% foliage, whereas unsprayed trees on average carried less than 10% of full foliage. The latter trees were susceptible to attack by Tomicus piniperda (L.), whereas the former largely escaped beetle attack. Beetle attacks peaked in 1993, and depletion of suitable host trees probably terminated the beetle outbreak in the area. Two years of severe defoliation resulted in substantial tree mortality and growth losses. In spring 1997, these unsprayed stands had suffered a ca. 50% loss in basal area which was mainly because of mortality, and about half of the dead trees had been attacked by T. piniperda. Surviving trees had ca 50% of full foliage, and radial growth had still not recovered. Basal area growth was reduced by 40-70%, depending on the amount of foliage left after the second year of defoliation. In contrast, tree mortality and beetle attack in the sprayed stands were negligible, and these trees had recovered full foliage and radial growth by spring 1997. Thus, one year of total defoliation resulted in an estimated loss in basal area growth of approximately 30% during ca. 5 yrs. In conclusion, the spraying operation was economically justified, as it prevented substantial tree mortality and reduced growth losses.  相似文献   

14.
Derivation of stem taper from the pipe theory in a carbon balance framework   总被引:1,自引:0,他引:1  
Mäkelä A 《Tree physiology》2002,22(13):891-905
A dynamic tree growth model is described. The model derives the development of stem taper and vertical distribution of branch basal area from the pipe model, assuming that reuse of active pipes is regulated by foliage dynamics in a vertically explicit crown with a foliage distribution of constant shape. Based on empirical findings, the pipe model was modified slightly to allow the foliage/sapwood ratio to vary as a function of distance from the treetop. Growth was derived from carbon balance in a stand of different size trees that may shade each other. The model was applied to old and middle-aged trees growing in dense and sparse stands of Scots pine for which stand-level measurements are available as a chronosequence, but individual trees have been measured only once. Measured trees were compared with corresponding simulated trees for stem taper and vertical distribution of branch basal area. The results indicated that the pipe model assumptions, combined with a model of tree growth, are capable of producing realistic predictions of the vertical distribution of stem and branch diameter in trees of different sizes in the stand. A comparison of the results with a simple form of the uniform stress theory showed good agreement between the two models. However, a significant difference was found between the measured relative contribution of heartwood to total stem diameter and the predicted share of disused pipes in the stem. A possible explanation for this discrepancy is that the transition from sapwood to heartwood is gradual rather than abrupt as assumed in the model. A modification of the pipe model to incorporate a gradual transition is outlined.  相似文献   

15.
The objective of this study was to evaluate the predictive power of crown defoliation, assessed in 5% classes, in predicting year-to-year tree mortality. A visual analysis of Swiss Forest Health Inventory (SFHI) data suggested an exponential increase in the mortality rate with increasing defoliation. We verified this trend using a logistic regression model with defoliation, social position and their interaction as explanatory variables. We fitted our model to SFHI data for the years 1990–1997 (annual mortality rate=0.32%), and validated the model with data from long-term forest ecosystem monitoring sites for the years 1995–1998 (annual mortality rate=0.48%). Several indicators of prediction accuracy showed that regression models with total defoliation achieved 40–50% higher accuracies than models with unexplained defoliation, i.e. the portion of defoliation that field crews are unable to attribute to known causes. The logistic regression model with total defoliation correctly predicted 33% of the dead trees in the calibration data set, and 57% in the validation data set. This prediction accuracy was calculated with a deterministic method, using a predicted threshold probability above which trees were assumed to die. Our study suggests that including defoliation has the potential of considerably improving the prediction accuracy of models that predict tree mortality based on competition indicators and tree size alone.  相似文献   

16.
The transfer matrix method of structural analysis was used to examine the hypothesis that tree stems grow to a shape that tends to equalize the average bending plus axial stresses to which they are subjected along their length. The method and computational procedures were checked by comparing computed height-diameter profiles with those calculated using elementary stress theory for trees with simple force distributions in the crown. Measured height-diameter profiles for trees were then taken from the literature and shown to be well-fitted by profiles calculated to give uniform stress along the stems, using the most realistic average forces and force distributions within the crowns. At high wind speeds, the height-diameter profile giving uniform stress was more tapered than the profile giving uniform stress at low wind speeds. The profile giving uniform stress was similar over the normal range of average wind speeds of 2.5 to 10.0 m s(-1) (at the top of the canopy). But a tree that had grown to give uniform stress along its stem in an average wind of 5 m s(-1) showed markedly decreased stress with height at wind speeds of about 15 m s(-1) or more, and increased stress with height (to the crown base) at wind speeds of about 1.25 m s(-1) or less. The fact that tree stems develop shapes in response to average conditions, but show varying stress distribution in extreme conditions, may help to explain some of the apparent evidence for non-uniform stress distribution in the literature. In general, our analysis supports the above hypothesis for the stem region above the butt swell.  相似文献   

17.
This study explores the diversity in sensitivity to drought of moist tropical forest tree species. Yearly tree growth records collected over a ten-year period in two one-hectare 70-year-old damar agroforest plots in Sumatra are analysed. These agroforests are mixed tree plantations, dominated by Shorea javanica K. & V., a dipterocarp tree cultivated and tapped for its commercially valuable resin (damar). Many indigenous fruit tree species grow in these agroforests, as well as timber tree species originating from the nearby natural forest. During the census period the multi-species stands were subjected to three El Nino Southern Oscillation (ENSO)-related droughts (1994, 1997 and 2002). At the tree community level, these droughts were associated with a marked decrease in radial stem growth. Multilevel modelling was used to explore the relative contribution of species, tree size and individual tree characteristics to the observed response to drought.All tree species appeared to be sensitive to drought but the amplitude of the response varied significantly across species. Predicted species mean decrease in stem radial growth rate on drought years (i.e. years with 6 months with less than 50 mm/month rainfall) ranged from less than 5% to more than 80%. Shared species were ranked consistently between plots indicating that the results were robust. Stem diameter significantly affected tree sensitivity to drought in two species only, but in opposite ways: in S. javanica, larger trees appeared to be less sensitive while the opposite was true for Lansium domesticum, an abundant fruit tree. Individual tree sensitivity to drought contributed significantly albeit to a small extent to the overall response to drought. This individual tree effect did not show any pattern of spatial correlation and hence could not be related to topographic features. It is likely to reflect the individual's unique history and genotype.  相似文献   

18.
The detection of stem water content is necessary as it is an important indicator for measuring woody plant vitality. However, the relationship between stem water content, determined by non-destructive, real-time, and long-term monitoring, and woody plant vitality remains undefined. In this study, the response of woody plant vitality to stem water content under different stress (freeze–thaw, pest, or drought) was analysed by mining the dynamic characteristics of the stem water content in different woody plants at the temporal scales of year, month, and day. Compared with unstressed trees, stressed trees had contrasting diurnal patterns. The stem water content in Populus koreana Rehd. during the freeze period was much lower than that during the thaw period, and opposite diurnal variation trends were observed during the freeze and thaw periods. The stem water content in infected Lagerstroemia indica was lower than that in uninfected L. indica, and the amplitude of the diurnal variation curve was lower in infected than in uninfected L. indica. Under drought stress, the more severe the water shortage, the lower the stem water content in Malus micromalus. When it was below a certain threshold, the diurnal variation trend was opposite to that without water shortage. In conclusion, stem water content dynamics can be used to evaluate the cold, pest, and drought response of trees, which could monitor tree health and guide forest assessment.  相似文献   

19.
Forest trees are exposed to a myriad of single and combined stresses with varying strength and duration throughout their lifetime, and many of the simultaneous and successive stress factors strongly interact. While much progress has been achieved in understanding the effects of single stresses on tree performance, multiple interacting stress effects cannot be adequately assessed from combination of single factor analyses. In particular, global change brings about novel combinations of severity and timing of different stresses, the effects of which on tree performance are currently hard to predict. Furthermore, the combinations of stresses commonly sustained by trees change during tree ontogeny. In addition, tree photosynthesis and growth rates decline with increasing tree age and size, while support biomass in roots, stem and branches accumulates and the concentrations of non-structural carbohydrates increase, collectively resulting in an enhancement of non-structural carbon pools. In this review, tree physiological responses to key environmental stress factors and their combinations are analyzed from seedlings to mature trees. The key conclusions of this analysis are that combined stresses can influence survival of large trees even more than chronic exposure to a single predictable stress such as drought. In addition, tree tolerance to many environmental stresses increases throughout the ontogeny as the result of accumulation of non-structural carbon pools, implying major change in sensing, response and acclimation to single and multiple stresses in trees of different size and age.  相似文献   

20.
Herbivory caused by leaf-eating insects continues to be a severe risk to forest trees and forest stands. Besides quantifying the extent of defoliation, the quantification of the trees’ response to the loss of biomass is a challenge to plant ecologists and foresters alike, and an important precondition for the application of appropriate silvicultural measures. While many defoliation studies target small trees as model systems, little is known about the effect of defoliation on larger trees. In the present study, we investigated the effects of 45% removal of leaf area on growth, biomass allocation and carbohydrates of 13 m tall, four-year-old, plantation Eucalyptus globulus Labill. in southern Tasmania. Responses were measured in three crown zones (lower, middle, upper) over a period of 11 months. Height increment was unaffected by defoliation, but diameter increment was significantly reduced 155 days after treatment. Defoliation treatment had no effect on stem volume and biomass partitioning compared with the control treatment. Trees responded to defoliation by decreased branch senescence in the lower crown, greater leaf area development in the mid crown and increased specific leaf area. Defoliation reduced concentration of soluble sugars (SS) in foliage by 22% and the pools of SS in the coarse roots by 34%. Decrease in root SS was only observed in 10-15 mm diameter class and the rootball. We concluded that this four-year-old E. globulus stands with a closed canopy was able to tolerate a single, partial artificial defoliation event, which is similarly observed with younger trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号