首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Spatial and temporal patterns of foliar disease caused by Phoma ligulicola were quantified in naturally occurring epidemics in Tasmanian pyrethrum fields. Disease assessments (defoliation incidence, defoliation severity, incidence of stems with ray blight, and incidence of flowers with ray blight) were performed four times each year in 2002 and 2003. Spatial analyses based on distribution fitting, runs analysis, and spatial analysis by distance indices (SADIE) demonstrated aggregation in fields approaching their first harvest for all assessment times between September and December. In second-year harvest fields, however, the incidence of stems with ray blight was random for the first and last samplings, but aggregated between these times. Spatiotemporal analyses were conducted between the same disease intensity measures at subsequent assessment times with the association function of SADIE. In first-year harvest fields, the presence of steep spatial gradients was suggested, most likely from dispersal of conidia from foci within the field. The importance of exogenous inoculum sources, such as wind-dispersed ascospores, was suggested by the absence of significant association between defoliation intensity (incidence and severity) and incidence of stems with ray blight in second-year harvest fields. The logistic model provided the best temporal fit to the increase in defoliation severity in each of six first-year harvest fields in 2003. The logistic model also provided the best fit for the incidence of stems with ray blight and the incidence of flowers with ray blight in four of six and three of six fields, respectively, whereas the Gompertz model provided the best fit in the remaining fields. Fungicides applied prior to mid-October (early spring) significantly reduced the area under disease progress curve (P < 0.001) for defoliation severity, the incidence of stems with ray blight, and the incidence of flowers with ray blight for epidemics at all field locations. This study provides information concerning the epidemiology of foliar disease and ray blight epidemics in pyrethrum and offers insight on how to best manage these diseases.  相似文献   

2.
Airborne conidia of Erysiphe graminis f.sp. hordei were sampled in three regions and a single locality in the northern part of France for 2 years. Sampling was carried out in early spring, in late spring and in autumn, in order to separate the effects of winter barley cultivars, carrying few specific resistance alleles, and of spring barley cultivars, carrying diverse resistance alleles, on the structure of the pathogen population. Although complex pathotypes with three to 10 virulences were selected by spring cultivars, simple pathotypes, including a pathotype with the single unnecessary virulence allele Va22 , which formed a clear majority of the samples, remained dominant in early spring, when winter but not spring cultivars were growing. In early spring, simple pathotypes were more prevalent in the north, where the winter cultivars represented 90% of the barley acreage, than in the east, where winter cultivars represented 65%. In the west, the frequency of simple pathotypes was limited compared to the north, possibly because of the resistance allele Mlg in winter cultivars. The high frequency of simple pathotypes in early spring could be explained by a differential adaptation between simple and complex pathotypes or by delayed epidemics on spring cultivars compared to winter cultivars.  相似文献   

3.
Ray blight caused by Stagonosporopsis tanaceti is one of the most important diseases of pyrethrum (Tanacetum cinerariifolium), a perennial herbaceous plant cultivated for the extraction of insecticidal pyrethrins in Australia. The disease is responsible for complete yield loss in severe outbreaks. Infected seed is considered as the principal source of S. tanaceti. Infection hyphae remain only in the seed coat and not in the embryo, resulting in pre- and post-emergence death of seedlings and latent infection. Therefore, quantification of the level of infection by S. tanaceti within seed using a qPCR assay is important for efficient management of the disease. Stagonosporopsis tanaceti completes its life cycle within 12 days after leaf infection through production of pycnidia and can infect every tissue of the pyrethrum plant except the vascular and root tissues. Ray blight epidemics occur in pyrethrum fields through splash dispersal of pycnidiospores between adjacent plants. Besides steam sterilization, thiabendazole/thiram and fludioxonil are effective seed-treating chemicals in controlling S. tanaceti before planting begins. Ray blight is currently managed in the field through the foliar application of strobilurin fungicides in the first 1–2 years of crop establishment. Later on, difenoconazole and multisite specific fungicides in the next 2–3 years during early spring successfully reduce ray blight infestation. Avoiding development of resistance to fungicides will require more sustainable management of ray blight including the development and deployment of resistant cultivars.  相似文献   

4.
Esker PD  Nutter FW 《Phytopathology》2003,93(2):210-218
ABSTRACT In order to better understand the epidemiology of the Stewart's disease of corn pathosystem, quantitative information concerning the temporal dynamics of the amount of pathogen inoculum present in the form of Pantoea stewartii-infested corn flea beetles (Chaetocnema pulicaria) is needed. Temporal changes in the proportion of P. stewartii-infested corn flea beetle populations were monitored by testing individual corn flea beetles for the presence of P. stewartii using a peroxidase-labeled, enzyme-linked immunosorbent assay. Approximately 90 corn flea beetles were collected each week from seven locations in Iowa from September 1998 through October 2000 using sweep nets. The proportion of P. stewartii-infested beetles at the end of the 1998 growing season ranged from 0.04 to 0.19. In spring 1999, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.10 to 0.11 and did not differ significantly from the previous fall based on chi(2). During the 1999 corn-growing season, the proportion of infested corn flea beetles ranged from 0.04 to 0.86, with the highest proportions occurring in August. In fall 1999, the proportion of beetles infested with P. stewartii ranged from 0.20 to 0.77. In spring 2000, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.08 to 0.30; these proportions were significantly lower than the proportions observed in fall 1999 at Ames, Chariton, and Nashua. During the 2000 corn-growing season, the proportion of P. stewartii-infested corn flea beetles ranged from 0.08 to 0.53, and the highest observed proportions again occurred in August. Corn flea beetle populations sampled in late fall 2000 had proportions of infested beetles ranging from 0.08 to 0.20. This is the first study to quantify the temporal population dynamics of P. stewartii-infested C. pulicaria populations in hybrid corn and provides new quantitative information that should be useful in developing risk models to predict the seasonal and site-specific risks associated with Stewart's disease of corn.  相似文献   

5.
Sheath blight (caused by Rhizoctonia solani) is one of the most important constraints in achieving high grain yield in intensive rice production systems. Canopy structure can influence the development of sheath blight epidemics. The objective of this study was to determine the effect of canopy structure parameters such as shoot number, leaf area index, biomass production, contact frequency, light transmittance and plant height on the development of sheath blight epidemics in commercial fields. Field experiments were conducted in both early and late seasons of 2009 and 2010 in Wuxue, Hubei province, China. The effects of nitrogen (N) rate and hill density on structure and production parameters and sheath blight severity were investigated. Sheath blight severity was recorded as a sheath blight index or relative lesion height on inoculated and uninoculated plants in each crop. Lesion length was measured on inoculated plants in 2010. The results showed that the sheath blight index increased with an increase of N rate and hill density in uninoculated plots in each trial. Stepwise multiple regression analysis demonstrated that contact frequency was consistently related to sheath blight. Lesion length on inoculated plants was not correlated with canopy structure. These results indicate that canopy structure influences sheath blight epidemics. A ‘healthy’ canopy resulting from appropriate crop management practices can be used to suppress sheath blight epidemics in rice.  相似文献   

6.
The rice blast fungus Pyricularia oryzae mainly overwinters in infested rice organs stored indoors, whereas it is difficult or impossible for the pathogen to overwinter outdoors. By contrast, blast pathogens infecting weed grasses must overwinter outdoors every winter to continue their life cycle. In this study, we investigated the overwintering location of P. oryzae infecting wild, green, and giant foxtails to identify the mechanism that enables them to overwinter. Recovery of P. oryzae was tested in seeds of wild foxtail collected from the soil surface from December to April over three winters. No P. oryzae was recovered from the seed samples of any wild foxtail collected at the ends of the three experimental periods in April. Recovery was also tested from blast lesions on leaves and seeds sampled from withered green foxtail in the experimental field of Saga University from November to April during two winters. In contrast to seeds on the soil surface, P. oryzae survived in lesions and seeds at the ends of the two experimental periods during April, suggesting that withered host plants could be the overwintering site of the pathogen. Rice plants are reaped and removed from paddy fields after harvesting. Thus, withered, standing plants may be available solely to blast pathogens infecting wild grasses, possibly explaining the higher winter survival frequency of weed pathogens than that of rice blast pathogens outdoors.  相似文献   

7.
中国西北地区近43年降水资源变化对农业的影响   总被引:20,自引:6,他引:14  
选取西北地区资料年代较长的171个地面测站1961~2003年历年降水量,深入研究了西北地区降水资源变化特征及其对农业生产的影响。结果表明:年降水量、越冬作物生育期降水量、春小麦生育期降水量和秋作物生育期降水量,1987~2003年与1961~1986年相比,西部增多,东部减少,分界线与黄河走向基本一致。西部呈增多变化趋势,洪水事件频数增多,可利用水资源略有增加,对农业的正面影响增大。东部呈减少变化趋势,干旱频繁发生,尤其是极端干旱事件频数增多,可利用降水资源更加紧缺,对农业的负面影响增大。西北地区冬季降水普遍增多,对土壤保墒、作物安全越冬和春播有利;但是,牧区雪灾增多,影响牲畜安全过冬。  相似文献   

8.
The French Plant Protection Service uses different techniques to provide advice on treatments against grapevine downy mildew: observation of primary foci, development of overwintering oospores and climate‐based forecasting models. This system is generally satisfactory but is time‐consuming, and the models used sometimes give a false evaluation of the severity of primary foci. We have accumulated 30 years of observations on the latter, together with the maturation of overwintering oospores. The severity of primary foci is linked to spring and autumn rainfall. Oospore maturation is affected by low autumn and warm spring temperatures. Long dry periods can block maturation. While there is little prospect that oospore maturation can be modelled in the near future, success can be expected for primary foci.  相似文献   

9.
The effects of fungicide, cultivar and plant density on the time‐to‐death of pyrethrum flowers affected by ray blight (caused by Phoma ligulicola var. inoxydablis) in Australia were analysed using nonparametric Kaplan–Meier (KM) estimates and accelerated failure time (AFT) models with a Weibull probability distribution. Analyses using KM estimates and AFT models yielded similar results. The median survival time (T) for all flowers in the fungicide trial was estimated at 53 days [95% confidence interval (CI) = 43–53] in 2000 and 60 days (CI = 51–60) in 2001. In both years, all fungicides tested except copper oxychloride significantly (P 0·0495) increased the duration of flower survival compared with nontreated plots. Significant variation (P < 0·0001) was noted between years and among four cultivars in terms of flower survival, with T values for different cultivars ranging from 41 to 81 days, and averaging 69 days (CI = 60–69) in 2005 and 64 days (CI = 56–64) in 2006 for all cultivars. Planting at a quarter the density currently recommended increased flower survival by 41·8% (χ2 = 29·19; P < 0·0001), but did not increase yield. Linear regression indicated that defoliation severity accounted for at least 94% of variation in median survival time. Improved management may be achieved via an integrated strategy incorporating these factors.  相似文献   

10.
Establishment methods for rice crops in tropical Asia are very diverse, leading to variation in the structure of rice canopies. Differences in canopy structure can in turn affect the spread of the rice sheath blight pathogen, Rhizoctonia solani . Rice sheath blight epidemics were compared during two seasons in crops established by different methods: direct broadcasting of pregerminated rice seeds, and transplanting of rice seedlings at spacings of 20 × 20 cm, 13 × 25 cm and 25 × 25 cm between hills (i.e. along and between rows, respectively). In both years, the apparent infection rate based on incidence data and the terminal severity of sheath blight were lower in the direct-seeded crops than in any of the transplanted ones, regardless of spacing. The frequency of leaf-to-leaf contacts ( CF ) between hills (or plants) was highest in direct-seeded rice, and lowest in rice transplanted at a spacing of 25 × 25 cm. Larger CF is known to favour rice sheath blight epidemics. The apparent contradiction between higher incidence and lower CF in the transplanted stands than in the direct-seeded stands is interpreted in terms of accessibility of healthy host tissues to the spread of the pathogen in the canopy, and accounts for within-host (rice hill or plant) and between-host (hill or plant) disease spread. The analysis of incidence-severity relationships indicated a less aggregated distribution of the disease in direct-seeded rice, which was related to the spatial distribution of the tillers. These findings have direct implications for the management of the disease.  相似文献   

11.
Potato cultivars were evaluated for their resistance responses to aggressive strains of Phytophthora infestans in field and laboratory experiments. Analysis of variance revealed differential cultivar-by-isolate interactions for both foliar and tuber blight resistance. Differential responses occur as revealed by specific susceptibilities of cultivars to certain pathogen genotypes and changing rank order. In general, severity of late blight epidemics as observed in the haulms did not correlate well with foliar blight resistance ratings as presented in the National List of Recommended Potato Varieties. No significant correlation was found between tuber blight incidence under field conditions and the tuber blight rating in the National List. Also, there was no relation between the field and laboratory tuber blight resistance assessments. A significant association was demonstrated between late blight infection in the foliage and tuber blight incidence under field conditions. The presence of differential interaction, independent of R-gene-based resistance, indicates some adaptation of P. infestans to partial resistance and consequently adverse effects on the stability and durability of partial resistance to potato late blight.  相似文献   

12.
Fire blight is the most damaging bacterial disease in apple production worldwide. Cankers and symptomless infected shoots are known as sites for the overwintering of Erwinia amylovora, subsequently providing primary inoculum for infection in the spring. In the present work, further potential sources of inoculum were investigated. Real‐time PCR assays covering a 3‐year‐period classified 19·9% of samples taken from fruit mummies as positive. Bacterial abundance in fruit mummies during autumn, winter and spring was up to 109 cells per gram of tissue and correlated well with later infection rates of blossoms. Blossoms of non‐host plants growing close to infected trees were also shown to be colonized by E. amylovora and to enable epiphytic survival and propagation of bacteria. The results indicate a potential role of fruit mummies and buds in overwintering and as a source of primary inoculum for dissemination of the pathogen early in the growing season. Non‐host blossoms may also serve as an inoculum source in the build‐up of the pathogen population. Both aspects may contribute significantly to the epidemiology of E. amylovora. The significance of infected rootstocks as an inoculum source is also discussed. Fruit mummies might be used to determine pathogen pressure in an orchard before the beginning of the blooming period.  相似文献   

13.
王新俊 《植物保护》2014,40(5):164-167
通过多年调查研究, 明确了甘肃省平凉市小麦条锈病菌越冬区域为海拔1 980 m以下的小麦种植区, 主要越冬区域在海拔1 750 m以下; 在对该市27年小麦条锈病历史资料系统分析的基础上, 研究筛选出了当年秋苗发病程度、冬季11月-翌年2月降水总量、翌年1月份平均气温、翌年1月31日前积雪日数等小麦条锈病越冬菌量的主要影响因子, 采用多元逐步回归方法组建了当地小麦条锈病越冬菌量预测模型, 回测准确率为72%, 对开展其综合治理有积极的指导作用。  相似文献   

14.
Pyrenopeziza brassicae, cause of light leaf spot of oilseed rape, has a complex polycyclic life cycle. It can be difficult to control light leaf spot in winter oilseed rape in the UK since it is not easy to optimise fungicide application timing. Early autumn infections are usually symptomless and recognisable lesions do not develop until the epidemic has progressed further by the spring. Light leaf spot often has a patchy distribution in winter oilseed rape crops and estimation of disease incidence can be difficult. There is evidence that epidemics are initiated primarily by ascospores produced from apothecia that survive the summer inter-crop period on infected debris. Subsequent development of the epidemic during the winter and spring is maintained by rain-splashed conidia that spread light leaf spot from initial foci. Understanding the relative roles of ascospores and conidia in the light leaf spot life cycle is crucial for forecasting epidemic severity and developing control strategies. The current web-based regional forecast system provides an autumn forecast of the incidence of light leaf spot that can be expected the following spring. This is based on survey data which assesses the occurrence of disease the previous July, and weather factors, such as deviations from summer mean temperature and winter rainfall. The forecast can be updated throughout the autumn and winter and includes crop-specific elements so that growers can adjust risks by inputting information about cultivar, sowing date and fungicide use. Crop-specific forecasts can be confirmed by assessing the incidence of light leaf spot. Such assessments will become easier when immunodiagnostic methods for detection of the disease become available. Incorporation of information on spore biology (e.g. apothecial maturation, ascospore release and infection conditions) is considered as a component of the interactive, continuously updated, crop-specific, web-based forecasts which are needed in the future.  相似文献   

15.
Sunn pest ( Eurygaster integriceps ) is the most serious and widespread pest of cereals in south-eastern Turkey. It is very important to estimate its spring populations, and the area possibly needing to be treated, a few months before they migrate to the fields. The field populations of the pest and the severity of epidemics can be forecast from the population density of overwintering adults per plant in the overwintering localities. To do this, surveys have been made since 1955 on 25 selected mountain sites. Parallel to these investigations, the population of overwintered adults per m2 in cereal fields has been determined in order to fix the area to be treated, since 1956. A relation can be seen between the population density of overwintered adults per plant and the next season's populations in the infested areas.  相似文献   

16.
The overwintering and the epidemic development in spring of leaf rust was studied in 11 winter barley cultivars at two different sites near Wageningen in 1976/1977. The amount of leaf rust decreased through the winter at both sites. Cultivars differed considerably in the amount of leaf rust in late winter. Both the moment and the rate of increase of leaf rust after the winter varied with cultivars. The ultimate amount of leaf rust in a cultivar was therefore determined by three factors: The amount of overwintering leaf rust, the onset of leaf rust increase and the rate of increase. The latter was determined by the partial resistance of the cultivar. Why the epidemics did not start at the same moment is yet unknown. The differential overwintering could be explained from the amounts of leaf rust and powdery mildew at the start of the winter, the effect of powdery mildew being a negative one. The correlation coefficient between the values observed in March and those predicted from the December leaf rust and powdery mildew readings was 0.93. In a second experiment carried out in 1979/1980 with six winter barley cultivars chosen from the first experiment the powdery mildew was succesfully excluded by treatment with fungicides. There was no decrease in the leaf rust over the winter nor a differential cultivar effect on overwintering.  相似文献   

17.
L.A.D. TURL 《EPPO Bulletin》1983,13(2):139-143
Since 1975 studies have been made in Scotland on the status of weeds as overwintering hosts for potato-infesting aphids. The results show that Myzus persicae, Macrosiphum euphorblae and Aulacorthum solani can all overwinter anholocyclically on weeds or wild plants, and also suggest that the success of such overwintering depends on the relative severity of the winter. It appears that this overwintering success can be quantified and used in forecasting the potential for these aphids to colonise potato crops during the following spring.  相似文献   

18.
Late blight, caused by Phytophthora infestans , is the most severe disease of potato worldwide. Controlling late blight epidemics is difficult, and resistance of host cultivars is either not effective enough, or too easily overcome by the pathogen to be used alone. In field trials conducted for 3 years under natural epidemics, late blight severity was significantly lower in a susceptible cultivar growing in rows alternating with partially resistant cultivars (mixtures) than in unmixed plots of the susceptible cultivar alone. Partially resistant cultivars behaved similarly in unmixed and mixed plots. Mixtures of cultivars reduced disease progress rates and sometimes delayed disease onset over unmixed plots, but did so significantly only for the slowest epidemic. This suggests that reduction of area under the disease progress curve (AUDPC) in mixtures resulted from the cumulative action of minor effects. Disease distribution was focal in all plots at all dates, as shown by Morisita's index values significantly exceeding 1. Significant yield increases for the susceptible cultivar, and occasionally for the partially resistant ones, were observed in mixed-cultivar plots compared with single-cultivar plots. These results show that cultivar mixtures can significantly reduce natural, polycyclic epidemics in broadleaved plants attacked by pathogens causing rapidly expanding lesions.  相似文献   

19.
The epidemiology of Verticillium dahliae and its effect on yield was studied for 3 years in three plots of olive cv. Picual, planted in soil previously cropped with highly susceptible V. dahliae host plants and irrigated with saline water. Disease incidence increased 2·2-, 2·6- and 1·5-fold in plots 3A, 9A and 9C, respectively, within 39, 25 and 15 months of the first record taken. The highest severities were recorded in spring 2001 (4·0, 5·3 and 5·4 on a scale of 2–10, respectively). Disease incidence and severity increased during winter–spring and decreased during summer. Seasonal changes were also observed in the isolation of V. dahliae ; the highest isolation rates in diseased trees were in winter (34%) and spring (45%), and the lowest were in autumn and summer (19–20%). Verticillium dahliae was isolated on an average of 27, 28 and 19% from the bottom, middle and top of the tree canopy, respectively, and was isolated from trees with and without symptoms. The fruit yield from diseased trees was reduced by an average of 75% in comparison with symptomless trees in plot 3A each year. A similar yield reduction (89%) was recorded in plot 9A in 2000. The severe expression of the disease and its effect on yield in the present study could be due to the fact that the orchard was planted in infested soil, and that saline irrigation probably exacerbates the problem.  相似文献   

20.
In winter oilseed rape experiments at Rothamsted in 2000/01 to 2002/03 growing seasons, the severity of phoma stem canker epidemics in summer depended on the timing of phoma leaf spot epidemics in the previous autumn, and hence on the timing of Leptosphaeria maculans ascospore release. The first major release of L. maculans ascospores was earlier in 2000 (26 September) and 2001 (18 September) than in 2002 (21 October). Consequently, the autumn phoma leaf spot epidemic was also earlier in 2000 and 2001 than in 2002. The resulting stem canker epidemics were severe by harvest (July) in 2001 and 2002 but not in 2003. No correlation was found between the severity or duration of phoma leaf spotting (lesion days or lesion °C-days) and the subsequent severity of phoma stem canker epidemics. Rates of leaf production and loss were similar in the three growing seasons. Out of ca. 25 leaves produced on plants during each season, leaf numbers 10–14 generally remained on plants for the longest. Treatment with flusilazole + carbendazim in autumn decreased the severity of phoma leaf spotting for several weeks after treatment, decreased the severity of stem canker the following summer and increased yield significantly in 2001 and 2002 but not in 2003. The most effective timings for flusilazole + carbendazim application were when leaves 7–11 were present on most plants and at least 10% of plants were affected by phoma leaf spot. Two half-dose applications of fungicide reduced phoma stem canker and increased yield more than a single full dose application when phoma leaf spot epidemics were early (<800 °C-days after sowing).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号