首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Collection of 50 mL of blood (standard unit) in cats is a common procedure. There are several studies on the health status of donors, but to our knowledge there are no reports on the effects of blood collection on the feline donor. HYPOTHESIS: Collection of a standard unit of blood from cats does not significantly change arterial blood pressure (BP), mean arterial pressure (MAP), systolic arterial pressure (SAP), diastolic arterial pressure (DAP), PCV, and heart rate (HR) in healthy blood donor cats. ANIMALS: Twenty-six healthy blood donor cats (6 spayed females and 20 castrated males). METHODS: An oscillometric method was used to measure MAP, SAP, DAP, and to quantify HR before and after blood collection; PCV was obtained before and immediately after blood collection. RESULTS: Despite a significant decrease (P < .05) in all variables (ie, BP, PCV, HR) after blood collection, no adverse events were observed. CONCLUSIONS AND CLINICAL IMPORTANCE: The collection of a unit of blood for transfusion from healthy donor cats weighing more than 5 kg appears to be safe, but this procedure leads to a decrease in arterial BP, PCV, and HR.  相似文献   

2.
Objective: To determine the cardiovascular effects of desflurane in dogs following acute hemorrhage. Design: Experimental study. Animals: Eight mix breed dogs. Interventions: Hemorrhage was induced by withdrawal of blood until mean arterial pressure (MAP) dropped to 60 mmHg in conscious dogs. Blood pressure was maintained at 60 mmHg for 1 hour by further removal or replacement of blood. Desflurane was delivered by facemask until endotracheal intubation could be performed and a desflurane expiratory end‐tidal concentration of 10.5 V% was maintained. Measurements and main results: Systolic, diastolic, and mean arterial blood pressure (SAP, DAP and MAP), central venous pressure (CVP), cardiac output (CO), stroke volume (SV), cardiac index (CI), systemic vascular resistance (SVR), heart rate (HR), respiratory rate (RR), partial pressure of carbon dioxide in arterial blood (PaCO2), and arterial pH were recorded before and 60 minutes after hemorrhage, and 5, 15, 30, 45 and 60 minutes after intubation. Sixty minutes after hemorrhage, SAP, DAP, MAP, CVP, CO, CI, SV, PaCO2, and arterial pH decreased, and HR and RR increased when compared with baselines values. Immediately after intubation, MAP and arterial pH decreased, and PaCO2 increased. Fifteen minutes after intubation SAP, DAP, MAP, arterial pH, and SVR decreased. At 30 and 45 minutes, MAP and DAP remained decreased and PaCO2 increased, compared with values measured after hemorrhage. Arterial pH increased after 30 minutes of desflurane administration compared with values measured 5 minutes after intubation. Conclusions: Desflurane induced significant changes in blood pressure and arterial pH when administered to dogs following acute hemorrhage.  相似文献   

3.
Cardiovascular effects of topical ophthalmic 10% phenylephrine in dogs   总被引:1,自引:1,他引:0  
Objective To evaluate the effect of topical ophthalmic 10% phenylephrine on systolic arterial pressure (SAP), diastolic arterial pressure (DAP), mean arterial pressure (MAP), pulse rate (PR) and electrocardiogram (ECG) in dogs. Animals studied Nine clinically normal dogs. Procedure Arterial catheters were placed in the dorsal pedal artery of awake dogs and ECG leads were attached. After a 15‐min acclimatization period, baseline PR, SAP, DAP and MAP were recorded every 5 min for 20 min. Two treatment groups (eight dogs each) were studied. Group I: one drop of phenylephrine was placed in each eye once. Group II: one drop of phenylephrine was placed in each eye three times at 5‐min intervals. Following treatment, PR, SAP, DAP and MAP were recorded every 5 min for 90 min. The mixed procedure of the SAS system was used to perform a repeated measures analysis of variance to test for linear and quadratic trends across time. Results Group I: There was a significant quadratic decrease in PR across time (P = 0.0051). Systolic arterial pressure increased linearly with time (P = 0.0002), MAP increased linearly with time (P = 0.0131), and DAP increased linearly with time (P = 0.0001). Group II: There was a significant quadratic decrease in PR across time (P = 0.0023). There was a significant quadratic increase in SAP (P = 0.0324), MAP (P = 0.0103) and DAP (P = 0.0131) across time. Conclusions Topical ophthalmic application of 10% phenylephrine in normal dogs results in elevation of arterial blood pressure and reflex bradycardia.  相似文献   

4.
ObjectiveTo investigate the efficacy of maxillary and infraorbital nerve blocks for prevention of cardiovascular and qualitative responses to rhinoscopy, as well as response to skin clamping after assigned nerve block placement.Study designRandomized, blinded, placebo‐controlled cross‐over experimental study.AnimalsEight random‐source mixed breed dogs > 1 year old and weighing between 13 and 22 kg.MethodsWithin three anesthetic episodes, separated by at least 3 days, dogs were assigned to receive either 1 mL lidocaine 2% maxillary nerve block (ML); 0.5 mL lidocaine 2% infraorbital nerve block (IOL); or equal amounts of saline for maxillary or infraorbital nerve block combined as control treatment (S). Monitoring included temperature, respiratory rate, end‐tidal CO2, ECG, heart rate (HR), systolic, diastolic and mean arterial pressure (SAP, DAP, MAP). Posterior (pR) and anterior rhinoscopies (aR) were performed and scored. Differences from baseline for outcome parameters HR, SAP, DAP, MAP were analyzed using repeated‐measures anova, and results reported as mean ± SD. Binary scores for rhinoscopy were analyzed using logistic regression, and odds ratio was reported.ResultsChanges from baseline for HR and SAP were significant for all treatments, besides ML for pR. Difference in changes from baseline among treatments was statistically significant for HR during pR with ML < S, and for SAP, DAP and MAP in right and left aR with ML < S and IOL > ML, except for DAP in left aR with only IOL > ML. Analysis of the binary score showed that the probability of a response for S and IOL treatments was nearly triple that of the ML treatment. None of the dogs, regardless of the treatments applied, responded to skin clamping.Conclusion and clinical relevanceCardiovascular parameters do not seem to reflect the occurrence of adverse reactions during rhinoscopy. The maxillary nerve block is superior to the infraorbital nerve block, as applied in this study, in preventing adverse reactions during posterior rhinoscopy.  相似文献   

5.
The purpose of this study was to determine the cardiovascular effects of 2.0% end‐tidal isoflurane in dogs administered dexmedetomidine (DEX). Using a randomized crossover design and allowing at least 2 weeks between treatments 12 adult hound dogs of either sex weighing 22 ± 1.7 SD kg were anesthetized by face mask administration of either sevoflurane or isoflurane to facilitate instrumentation prior to administration of treatment drugs. Dogs were intubated and instrumented to enable measurement of heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, mean pulmonary arterial pressure (PAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), pulmonary arterial temperature (TEMP), and cardiac output (CO) via thermodilution using 5 mL of 5% dextrose, and recording the average of three replicate measurements. Cardiac index (CI) and systemic (SVR) and pulmonary vascular resistances were calculated. Following completion of instrumentation, dogs were allowed to recover for 40 minutes. After collection of baseline data, dogs were administered one of four treatments at T‐10 minutes prior to injection of DEX (500? g M–2 IM): 1) saline (SAL); 2) atropine [ATR, 0.02 (n = 6) or 0.04 (n = 6) mg kg–1 IM]; 3) ISO (2.0% end tidal concentration); or 4) ISO + ATR. Cardiovascular data were collected at T‐20 and T‐5 minutes prior to administration of DEX, and at 5, 10 , 20, 30, 40, and 60 min following DEX. Data were analyzed using anova for repeated measures with post‐hoc differences between means identified using Bonferroni's method (p < 0.05). Differences in ATR dose were not found to be significant and thus results for ATR dose groups were pooled. Administration of SAL (dexmedetomidine alone) was associated with decreases in HR and CO and increases in SAP, MAP, DAP, CVP, and SVR. Administration of ATR was associated with an increase in HR and CO compared with SAL. Administration of ISO was associated with an increase in HR and a decrease in SVR, MAP and CVP compared with SAL. Administration of ISO + ATR was associated with effects similar to that of ISO or ATR alone. We conclude that administration of ISO reduces the increase in SVR associated with administration of DEX and does not adversely affect CO.  相似文献   

6.
Systemic hypertension is hypothesized to cause renal injury to dogs. This study was performed on dogs with surgically induced renal failure to determine whether hypertension was associated with altered renal function or morphology. Mean arterial pressure (MAP), heart rate (HR), systolic arterial pressure (SAP), and diastolic arterial pressure (DAP) were measured before and after surgery. Glomerular filtration rate (GFR) and urine protein:creatinine ratios (UPC) were measured at 1, 12, 24, 36, and 56-69 weeks after surgery, and renal histology was evaluated terminally. The mean of weekly MAP, SAP, and DAP measurements for each dog over the 1st 26 weeks was used to rank dogs on the basis of MAP, SAP, or DAP values. A statistically significant association was found between systemic arterial pressure ranking and ranked measures of adverse renal responses. When dogs were divided into higher pressure and lower pressure groups on the basis of SAP, group 1 (higher pressure, n = 9) compared with group 2 (lower pressure, n = 10) had significantly lower GFR values at 36 and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, and fibrosis. When dogs were divided on MAP and DAP values, group 1 compared with group 2 had significantly lower GFR values at 12, 24, 36, and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, fibrosis, and cell infiltrate. These results demonstrate an association between increased systemic arterial pressure and renal injury. Results from this study might apply to dogs with some types of naturally occurring renal failure.  相似文献   

7.
The purpose of this study was to determine the cardiovascular effects of sodium nitroprusside (SNP)‐induced after load reduction in dogs administered dexmedetomidine (DEX). Using a randomized crossover design and allowing at least 2 weeks between treatments 12 adult hound dogs of either sex weighing 22 ± 1.7 SD kg were anesthetized by face mask administration of 2.9% ET sevoflurane to facilitate instrumentation prior to administration of treatment drugs. Dogs were intubated and instrumented to enable measurement of heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, mean pulmonary arterial pressure (PAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), pulmonary arterial temperature (TEMP), and cardiac output (CO). Systemic (SVR) and pulmonary vascular resistances were calculated. Following completion of instrumentation dogs were allowed to recover for 40 minutes. After collection of baseline data, dogs were administered one of four treatments at T–10 minutes prior to injection of DEX (500? g M–2 IM): 1) saline (SAL); 2) atropine (ATR, 0.02 [n = 6] or 0.04 [n = 6] mg kg–1 IM); 3) SAL + SNP (infused at 1–10 ?g kg–1 minute–1, IV as needed to maintain MAP between 90–110 mm Hg; or 4) ATR + SNP. Cardiovascular data were collected at T‐20 minutes prior to administration of DEX, T‐5 and at 5, 10, 20, 30, 40, and 60 minutes following DEX. Data were analyzed using anova for repeated measures with post hoc differences between means identified using Bonferroni's method (p < 0.05). Differences in ATR dose were not found to be significant and thus results for ATR dose groups were pooled. Administration of SAL (dexmedetomidine alone) was associated with decreases in HR and CO and increases in SAP, MAP, DAP, CVP, and SVR. Administration of ATR was associated with an increase in HR and CO compared with SAL. Administration of SNP was associated with an increase in HR and CO and a decrease in SVR, MAP and CVP compared with SAL. Administration of SNP + ATR was associated with effects similar to that of SNP or ATR alone and resulted in an additive increase in CO. We conclude that SNP‐induced afterload reduction with or without atropine is effective in mitigating DEX‐induced impairment of cardiovascular function.  相似文献   

8.
Objective – To determine the accuracy and precision of an oscillometric noninvasive blood pressure device as a predictor of invasive direct blood pressure in healthy anesthetized hypotensive and normotensive dogs. Design – Prospective observational study. Setting – University teaching hospital. Animals – Eight crossbred adult dogs. Interventions – Anesthesia was induced with propofol and maintained with isoflurane. A catheter was placed in the dorsal pedal artery to record systolic, mean, and diastolic arterial blood pressures (aSAP, aMAP, and aDAP, respectively). The noninvasive blood pressure device cuff was placed around the contralateral front limb to record noninvasive systolic, mean, and diastolic blood pressure (nSAP, nMAP, and nDAP). Two states of blood pressure (BP) were studied: baseline state was established by keeping end‐tidal isoflurane concentration at 1.2±0.1%. The hypotensive state was achieved by maintaining the same isoflurane concentration while withdrawing approximately 40% of the animal's blood volume until aMAP was stable at approximately 40 mm Hg. At the end of the study, blood was returned to the animal and it was allowed to recover from anesthesia. Measurements and Main Results – Agreement between the direct and indirect BP measurements was determined by the Bland‐Altman method. The SAP and MAP but not DAP bias varied significantly between each BP state. Normotensive absolute biases (mean [SD]) for SAP, MAP, and DAP were ?14.7 mm Hg (15.5 mm Hg), ?16.4 mm Hg (12.1 mm Hg), and ?14.1 mm Hg (15.8 mm Hg), respectively. Absolute biases during the hypotensive state for SAP, MAP, and DAP were ?32 mm Hg (22.6 mm Hg), ?24.2 mm Hg (19.5 mm Hg), and ?16.8 mm Hg (17.2 mm Hg), respectively. Conclusion – The oscillometric device was not reliably predictive of intra‐arterial BP during hypotension associated with acute hemorrhage.  相似文献   

9.
OBJECTIVE: To examine the agreement between direct arterial blood pressure measurements obtained from 2 arteries and indirect blood pressure measurements obtained with an oscillometric blood pressure monitor (OBPM) during normotension and phenylephrine-induced hypertension in dogs. ANIMALS: 16 male Beagles. PROCEDURES: In anesthetized dogs, arterial catheters were placed in the lingual and dorsal pedal arteries for measurement of arterial blood pressure. A blood pressure cuff was placed on either the dog's fore- or hind limb and connected to an OBPM. Systolic, diastolic, and mean arterial blood pressures (SAP, DAP, and MAP, respectively) were recorded from both arteries and the OBPM every 5 minutes for 30 minutes (baseline), during a 30-minute period in which dogs received a phenylephrine infusion IV to induce hypertension, and for 30 minutes after discontinuation of the infusion. Mean differences in blood pressure values and confidence intervals were calculated to compare the indirect and direct measurement techniques. RESULTS: In dogs, oscillometry underestimated SAP during normotension, and the difference between oscillometric and direct measurements increased during hypertension. Oscillometry underestimated DAP, but the difference between oscillometric and direct measurements decreased during hypertension. There was close agreement among techniques for MAP determinations. Biases between direct measurements and OPBM blood pressure values measured from dogs' forelimbs or hind limbs were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: In normotensive dogs, oscillometric measurements of MAP and SAP agreed more closely with direct arterial pressure measurements than oscillometric estimates of DAP. Oscillometric measurement of MAP was accurate during both normotension and hypertension in dogs.  相似文献   

10.
The objective of this paper was to evaluate romifidine as a pre-medicant in dogs prior to propofol-isoflurane anaesthesia, and to compare it with medetomidine. For this, eight healthy dogs were anaesthetised. Each dog received three pre-anaesthetic protocols: R40 (romifidine, 40 microg/kg, IV), R80 (romifidine, 80 microg/kg, IV) or MED (medetomidine, 10 microg/kg, IV). Induction of anaesthesia was delivered with propofol and maintained with isoflurane. The following variables were studied before sedative administration and 10 min after sedative administration: heart rate (HR), mean arterial pressure (MAP), systolic arterial pressure (SAP) and diastolic arterial pressure (DAP) and respiratory rate (RR). During maintenance, the following variables were recorded at 5-min intervals: HR, MAP, SAD, DAP, arterial oxygen saturation (SpO(2)), end-tidal CO(2)(EtCO(2)), end-tidal concentration of isoflurane (EtISO) required for maintenance of anaesthesia and tidal volume (TV). Time to extubation, time to sternal recumbency and time to standing were also registered. HR and RR experimented a significantly decreased during sedation in all protocols respect to baseline values. Mean HR, MAP, SAP, DAP, SpO(2), EtCO(2), and TV during anaesthesia were similar for the three protocols. End tidal of isoflurane concentration was statistically similar for all protocols. Recovery time for R40 was significantly shorter than in R80 and MED. The studied combination of romifidine, propofol and isoflurane appears to be an effective drug combination for inducing and maintaining general anaesthesia in healthy dogs.  相似文献   

11.
ObjectiveTo compare high definition oscillometry (HDO) to invasive blood pressure measurement in anaesthetized dogs.Study designProspective, clinical trial.AnimalsFifty dogs weighing 1.95–79 kg (mean 23.5 kg).Materials and methodsAnaesthetic and peri–anaesthetic management was chosen according to each dog's physical status and anaesthetist's preference. Direct arterial blood pressure measurements were performed using a catheter placed in the dorsal pedal artery and an electronic pressure transducer connected to a multiparameter monitor. Non–invasive blood pressure measurements were performed using an appropriately sized cuff placed around the tail base. Comparisons between the two methods were made using Bland and Altman plots. The data are reported as mean bias (lower, upper limits of agreement). Further analysis was performed after separating the data into the following categories based on invasive mean arterial blood pressure (MAP): high (MAP > 100 mmHg), medium (70 mmHg < MAP < 100 mmHg) and low (MAP < 70 mmHg) blood pressure (BP). The two methods were compared as used clinically.ResultsEight hundred measurement pairs for invasive and HDO BP readings were compared. Overall, the HDO measured lower values for SAP and DAP but higher for MAP than the invasive method. The lowest bias (upper, lower limits of agreement) were obtained for MAP, ?1 (?22, 19) mmHg. The biggest discrepancy between the methods was reflected by a large bias (limits of agreement) 5 (?34, 45) mmHg, was for SAP. The results for DAP were between those for SAP and MAP with a bias (limits of agreement) of 3 (?20, 27) mmHg. When the values were separated into the pressure range categories the HDO measured higher in the high, medium and low BP groups, with the exception of SAP in the low BP group.ConclusionsWhen considering the mean bias, the accuracy of HDO compared well with direct arterial blood pressure, but the precision was poor, as determined by wide limits of agreement.Clinical relevanceUsing trends and serial measurements rather than a single measurement for clinical decision making is recommended with both methods, when used as reported here.  相似文献   

12.
ObjectiveTo describe an approach for ethmoidal nerve block (EBLOCK) and to compare the effects of a maxillary nerve block (MBLOCK), EBLOCK and their combination (M-EBLOCK) on heart rate (HR), systolic (SAP), mean (MAP), diastolic (DAP) arterial pressures and respiratory rate (fR) during nasal stimulation in dogs.Study designProspective, blinded, randomized, crossover placebo-controlled study.AnimalsBeagle dogs (five cadavers, nine live dogs), with a median (interquartile range) weight of 10.5 (10.3–11.0) kg.MethodsThe accuracy of iohexol injections (each 1 mL) at the maxillary and ethmoidal foramina in cadavers was evaluated using computed tomography. Then, anesthetized dogs were administered four bilateral treatments separated by 1 week, saline or 2% lidocaine 1 mL per injection: injections of saline at the maxillary and ethmoidal foramina (Control), injections of lidocaine at the maxillary foramina and saline at the ethmoidal foramina (MBLOCK), injections of saline at the maxillary foramina and lidocaine at the ethmoidal foramina (EBLOCK) and injections of lidocaine at all foramina (M-EBLOCK). The ventral nasal meatus was bilaterally stimulated using cotton swabs, and HR, SAP, MAP, DAP and fR were continuously recorded. Values for each variable were compared before and after stimulation using Wilcoxon signed-rank test. Changes in variables among treatments were analyzed using Mann–Whitney U and Kruskal–Wallis tests (p ≤ 0.05).ResultsComputed tomography revealed iohexol distribution around the openings of the target foramina in all cadavers. In living dogs, HR, SAP, MAP, DAP and fR significantly increased after stimulation within each treatment (p < 0.03). Physiologic responses were significantly attenuated, but not absent, in the M-EBLOCK [HR (p = 0.019), SAP, MAP, DAP and fR (all p ≤ 0.001)] compared with those in the Control.Conclusions and clinical relevanceConcurrent injections of lidocaine at the maxillary and ethmoidal foramina attenuated HR, arterial pressure and fR responses to nasal stimulation in Beagle dogs.  相似文献   

13.
This study was performed to determine the cardiovascular responses to isoflurane in euthyroid and hypothyroid dogs. Four healthy mixed-breed dogs were studied prior to thyroidectomy (PRE), 6 months after thyroidectomy (HYP), and after 2 months of oral supplementation with 1-thyroxine (SUP). Heart rate (HR), cardiac output (), stroke volume (SV), systolic, diastolic, mean arterial blood pressure (SAP, DAP, MAP), and total peripheral resistance (TPR) were determined in awake dogs and in the same dogs when end-tidal isoflurane concentrations were 1.28%, 1.92%, and 2.56%. Ventilation was controlled in anesthetized dogs and Paco2 maintained between 38 to 42 mm Hg. Isoflurane caused significant ( P <.05) dose-dependent reduction in , SV, SAP, DAP, and MAP in the PRE, HYP, and SUP dogs. Cardiac output was lower in the HYP dogs than in the PRE or SUP dogs during awake measurement. TPR was increased in the awake HYP dogs compared with the PRE or SUP dogs. During anesthesia, HYP dogs tended to have lower , SV, SAP, and MAP than the PRE or SUP groups, but the only significant reduction was SAP during 1.5 MAC. The cardiovascular responses to isoflurane in hypothyroid dogs are similar to euthyroid animals with a dose-dependent depression in , SV, and arterial pressure.  相似文献   

14.
ObjectiveTo determine the accuracy of an oscillometric blood pressure monitor in anesthetized sheep.Study designProspective study.AnimalsTwenty healthy adult sheep, 11 males and nine females, weighing 63.6 ± 8.6 kg.MethodsAfter premedication with buprenorphine or transdermal fentanyl, anesthesia was induced with ketamine‐midazolam and maintained with isoflurane and ketamine, 1.2 mg kg?1 hour?1, ± lidocaine, 3 mg kg?1 hour?1. Invasive blood pressure measurements were obtained from an auricular arterial catheter and noninvasive measurements were from a cuff on the metatarsus or antebrachium. Simultaneous invasive and noninvasive measurements were recorded over a range (55–111 mmHg) of mean arterial pressures (MAP). Isoflurane concentration was increased to decrease MAP and decreasing the isoflurane concentration and infusing dobutamine achieved higher pressures. Invasive and noninvasive measurements were compared.ResultsCorrelation (R2) was good between the two methods of measurement (average of three consecutive readings) for systolic (SAP) (0.87), diastolic (DAP) (0.86), and mean (0.90) arterial pressures (p < 0.001). Bias ± SD between noninvasive and invasive measurements for SAP was 3 ± 8 mmHg, for DAP was ?10 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. There was no significant difference between the average of three measurements and use of the first measurement. Correlations using the first measurement were SAP (0.82), DAP (0.84), and MAP (0.89). Bias ± SD for SAP was 3 ±10 mmHg, for DAP was ?11 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. The oscillometric monitor slightly overestimated SAP and underestimated DAP and MAP for both average values and the first reading.Conclusions and clinical relevanceThis oscillometric model provided MAP measurements that were acceptable by ACVIM standards. MAP measurements with this monitor were lower than those found with the invasive technique so a clinical diagnosis of hypotension may be made in sheep that are not hypotensive.  相似文献   

15.
ObjectiveTo evaluate agreement with central systemic arterial pressure of an oscillometer and two cuff widths placed on the thoracic or pelvic limbs.Study designProspective experimental study.AnimalsA group of nine New Zealand White rabbits weighing 3.5 ± 0.3 kg.MethodsRabbits were sedated with dexmedetomidine and midazolam, then anesthetized with ketamine and sevoflurane. The femoral artery was surgically exposed and a 20 gauge, 5 cm catheter inserted to measure systolic (SAP), mean (MAP) and diastolic (DAP) blood pressure at the iliac artery and caudal aorta junction. Adjustments of vaporizer dial and dobutamine infusion provided a range of invasive blood pressure (IBP). Two measurements of IBP were recorded during the oscillometer cycling phase, and the mean value was used in analyses. Oscillometer cuffs of bladder width 2.0 cm (S1) and 2.5 cm (S2) were placed proximal to the carpus and tarsus. Cuff width to circumference ratio was calculated. Oscillometer SAP, MAP and DAP were paired with corresponding IBP values. Agreement was assessed using linear mixed models (p < 0.05).ResultsCuff ratios for both limbs were 41% (S1 cuff) and 50% (S2 cuff) and 122–139 paired observations were obtained. There was significant limb × cuff interaction with SAP and MAP. The oscillometer overestimated SAP and MAP on the pelvic limb and underestimated SAP and MAP on the thoracic limb. For SAP, the oscillometer overestimated by constant bias (–19 ± 2 mmHg) and proportional bias (0.28 ± 0.02 mmHg per 1 mmHg increase). For MAP, the oscillometer underestimated by constant bias (4 ± 2 mmHg) and was worse with S2 on the thoracic limb. Overestimation was similar between cuffs on the pelvic limb. For DAP, the oscillometer underestimated by constant bias (15 ± 2 mmHg).Conclusions and clinical relevanceCuff S1 on the thoracic limb provided best estimation of MAP.  相似文献   

16.
OBJECTIVE: To determine cardiovascular responses to administration of butorphanol in isoflurane-anesthetized horses. STUDY DESIGN: Retrospective evaluation of anesthetic records. ANIMALS: Seventy-six horses anesthetized for a variety of clinical surgical procedures. METHODS: Anesthetic records of clinical equine patients anesthetized between January 1999 and December 2003 were searched. The records were reviewed for horses in which anesthesia was induced with ketamine and a benzodiazepine and maintained with isoflurane, and horses that received butorphanol intraoperatively. Exclusion criteria included horses in which the rate of infusion of an inotrope or end-tidal isoflurane concentration was changed 10 minutes before or after the butorphanol bolus. The horses were separated into two groups: group 1 horses received butorphanol at intervals as part of a balanced protocol, group 2 horses had > or = 10% increase in heart rate (HR) or blood pressure within 10 minutes prior to butorphanol administration. RESULTS: Eighty-nine butorphanol administration events matched the criteria for inclusion, 49 in group 1 and 40 in group 2. There were no significant changes after butorphanol administration in systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), and heart rate (HR) in group 1, or in end-tidal carbon dioxide concentration or hemoglobin oxygen saturation in either group. There were significant decreases in SAP (p < 0.0001), MAP (p < 0.0005), and DAP (p < 0.0008) after butorphanol administration in group 2. CONCLUSIONS AND CLINICAL RELEVANCE: The results presented here confirm that butorphanol can be administered to horses during isoflurane anesthesia without adverse effects on HR and arterial blood pressure. The results imply that butorphanol can deepen the plane of anesthesia and obtund sympathetic stimulation from a surgical procedure.  相似文献   

17.
The purpose of this study was to evaluate the cardiopulmonary effects of anesthetic induction with diazepam/ketamine or xylazine/ketamine with subsequent maintenance of anesthesia using isoflurane in foals undergoing abdominal surgery. Seventeen foals underwent laparotomy at 7–10 days of age and a laparoscopy 7–10 days later. Foals were randomly assigned to receive xylazine (0.8 mg kg?1)/ketamine (2 mg kg?1) (X/K)(n = 9) or diazepam (0.2 mg kg?1)/ketamine (2 mg kg?1) (D/K)(n = 8) for induction of anesthesia for both procedures. In all foals, anesthesia was maintained with isoflurane in oxygen with the inspired concentration adjusted to achieve adequate depth of anesthesia as assessed by an individual blinded to the treatments. IPPV was employed throughout using a tidal volume of 10 mL kg?1 adjusting the frequency to maintain eucapnia (PaCO2 35–45 mm Hg, 4.7–6.0 kPa). Cardiopulmonary variables were measured after induction of anesthesia prior to, during, and following surgery. To compare the measured cardiopulmonary variables between the two anesthetic regimes for both surgical procedures, results were analyzed using a three‐way factorial anova for repeated measures (p < 0.05). During anesthesia for laparotomy, mean CI and MAP ranged from 110 to 180 mL kg?1 minute?1 and 57–81 mm Hg, respectively, in the D/K foals and 98–171 mL kg?1 minute?1 and 50–66 mm Hg in the X/K foals. Overall, CI, HR, SAP, DAP, and MAP were significantly higher in foals in the D/K group versus the X/K group during this anesthetic period. During anesthesia for laparoscopy, mean CI and MBP ranged from 85 to 165 mL kg?1 minute?1 and 67–83 mm Hg, respectively, in the D/K group, and 98–171 mL kg?1 minute?1 and 48–67 mm Hg in the X/K group. Only HR, SAP, DAP, and MAP were significantly higher in the D/K group versus X/K group during this latter anesthetic period. There were no significant differences between groups during either surgical procedure for end‐tidal isoflurane, PaO2, PaCO2, or pH. In conclusion, anesthesia of foals for laparotomy and laparoscopy with diazepam/ketamine/isoflurane is associated with less hemodynamic depression than with xylazine/ketamine/isoflurane.  相似文献   

18.
The purpose of this study was to determine the cardiovascular, analgesic, and sedative effects of IV medetomidine (M, 20 µg kg?1), medetomidine–hydromorphone (MH, 20 µg kg?1 ? 0.1 mg kg?1), and medetomidine–butorphanol (MB, 20 µg kg?1 ? 0.2 mg kg?1) in dogs. Using a randomized cross‐over design and allowing 1 week between treatments, six healthy, mixed‐breed dogs (five males and one female) weighing 20 ± 3 kg, were induced to anesthesia by face‐mask administration of 2.9% ET sevoflurane to facilitate instrumentation prior to administration of the treatment combinations. Dogs were intubated and instrumented to enable measurement of heart rate (HR), systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), mean pulmonary arterial pressure (PAP), pulmonary arterial occlusion pressure (PAOP), central venous pressure (CVP), pulmonary arterial temperature (TEMP), and cardiac output via thermodilution using 5 mL of 5% dextrose, and recording the average of the three replicate measurements. Cardiac index (CI) and systemic (SVR) and pulmonary vascular resistances were calculated. After instrumentation was completed, administration of sevoflurane was discontinued, and the dogs were allowed to recover for 30 minutes prior to administration of the treatment drugs. After collection of the baseline samples for blood gas analysis and recording the baseline cardiovascular variables, the test agents were administered IV over 10 seconds and the CV variables recorded at 5, 10, 15, 30, 45, and 60 minutes post‐injection. In addition, arterial blood was sampled for blood gas analysis at 15 and 45 minutes following injection. Intensity and duration of analgesia (assessed by toe‐pinch response using a hemostat) and level of sedation were evaluated at the above time points and at 75 and 90 minutes post‐injection. Data were analyzed using anova for repeated measures with posthoc differences between means identified using Bonferroni's method (p < 0.05). Administration of M, MH, or MB was associated with increases in SAP, MAP, DAP, PAP, PAOP, CVP, SVR, and TEMP and with decreases in HR and CI. No differences in CV variables between treatment groups were identified at any time. PaO2 increased over time in all groups and was significantly higher when MH was compared with M. At 45 minutes, PaO2 tended to decrease over time and was significantly lower when MH and MB were compared with M at 15 minutes. Analgesia scores for MH and MB were significantly higher compared with M through 45 minutes, while analgesia scores for MH were significantly higher compared with M through 90 minutes. Sedation scores were higher for MH and MB compared with M throughout 90 minutes. Durations of lateral recumbency were 108 ± 10.8, 172 ± 15.5, and 145 ± 9.9 minutes for M, MH, and MB, respectively. We conclude that MH and MB are associated with improved analgesia and sedation and have similar CV effects when compared with M.  相似文献   

19.
OBJECTIVE: To compare sedative, analgesic, and cardiopulmonary effects after IV administration of medetomidine (20 microg/kg), medetomidine-hydromorphone (20 microg of medetomidine/kg and 0.1 mg of hydromorphone/kg), and medetomidine-butorphanol (20 microg of medetomidine/kg and 0.2 mg of butorphanol tartrate/kg) in dogs. ANIMALS: 6 dogs healthy mixed-breed dogs. PROCEDURE: Instruments were surgically inserted, and heart rate (HR), respiratory rate (RR), systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), mean pulmonary arterial pressure (MPAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), core body temperature, and cardiac output (CO) were measured 0, 5, 10, 15, 30, 45, and 60 minutes after injection. Cardiac index (CI), stroke volume (SV), stroke index (SI), systemic vascular resistance (SVR), and pulmonary vascular resistance (PVR) were calculated. Arterial samples for blood gas analysis were collected 0, 15, and 45 minutes after injection. Intensity of analgesia, degree of sedation, and degree of muscle relaxation were evaluated at aforementioned time points and 75, 90, 120, 150, 180, and 210 minutes after injection. RESULTS: Administration of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol was associated with increases in SAP, MAP, DAP, MPAP, PCWP, CVP, SVR, PVR, core body temperature, and PaCO2 and decreases in HR, CO, CI, SV, SI, RR, pH, and PaO2. Clinically important differences were not detected among treatments. Medetomidine-hydromorphone and medetomidine-butorphanol provided a longer duration of sedation and better quality of analgesia, compared with medetomidine alone. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine-hydromorphone or medetomidine-butorphanol is associated with improved analgesia and sedation but has cardiopulmonary effects comparable to those for medetomidine alone.  相似文献   

20.
OBJECTIVE: To compare the performance of the Surgivet Non-Invasive Blood Pressure (NIBP) monitor V60046 with an invasive blood pressure (IBP) technique in anaesthetized dogs. STUDY DESIGN: A prospective study. ANIMALS: Thirty-four dogs, anaesthetized for a variety of procedures. METHODS: Various anaesthetic protocols were used. Invasive blood pressure measurement was made using a catheter in the femoral or the pedal artery. A cuff was placed on the contralateral limb to allow non invasive measurements. Recordings of arterial blood pressures (ABPs) were taken at simultaneous times for a range of pressures. For analysis, three pressure levels were determined: high [systolic blood pressure (SAP) > 121 mmHg], normal (91 mmHg < SAP < 120 mmHg) and low (SAP < 90 mmHg). Comparisons between invasive and non invasive measurements were made using Bland-Altmann analysis. RESULTS: The NIBP monitor consistently underestimated blood pressure at all levels. The lowest biases and greatest precision were obtained at low and normal pressure levels for SAP and mean arterial pressure (MAP). At low blood pressure levels, the biases +/- 95% confidence interval (CI) were 1.9 +/- 2.96 mmHg (SAP), 8.3 +/- 2.41 mmHg diastolic arterial pressure (DAP) and 3.5 +/- 2.09 mmHg (MAP). At normal blood pressure levels, biases and CI were: 1.2 +/- 2.13 mmHg (SAP), 5.2 +/- 2.32 mmHg (DAP) and 2.1 +/- 1.54 mmHg (MAP). At high blood pressure levels, the biases and CI were 22.7 +/- 5.85 mmHg (SAP), 5.5 +/- 3.13 mmHg (DAP) and 9.4 +/- 3.52 mmHg (MAP). In 90.6% of cases of hypotension (MAP < 70 mmHg), the low blood pressure was correctly diagnosed by the Surgivet. CONCLUSIONS: Measurement of blood pressure with the indirect monitor allowed detection of hypotension using either SAP or MAP. The most accurate readings were determined for MAP at hypotensive and normal levels. The monitor lacked accuracy at high pressures. CLINICAL RELEVANCE: When severe challenges to the cardiovascular system are anticipated, an invasive method of recording ABP is preferable. For routine usage, the Surgivet monitor provided a reliable and safe method of NIBP monitoring in dogs, thereby contributing to the safety of anaesthesia by providing accurate information about the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号