首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Zn和ABT对玉米根系生长及根际磷酸酶活性和pH的影响   总被引:3,自引:0,他引:3  
在石灰性土壤上,以田间根袋栽培方法,研究了Zn和生根粉4号(ABT)对玉米在5个生育期中根系生长和根际微生态环境的影响。结果表明,玉米根系生长随生育期呈"S"型分布,根长和根体积在生育后期呈下降趋势。Zn和ABT的应用促进了根系的生长,扩大了根系和土壤接触面积,减缓了后期根系衰老速度,并改善了根际微生态环境。玉米根际土壤pH低于非根际;根际土壤磷酸酶活性显著高于非根际。抽雄期,Zn、ABT和Zn+ABT处理土壤碱性磷酸酶活性较高。Zn和ABT的应用改善了玉米根际微生态环境,为有效利用土壤和肥料磷打下基础。  相似文献   

2.
田间玉米和蚕豆对低磷胁迫响应的差异比较   总被引:1,自引:1,他引:0  
【目的】植物在长期进化过程中形成了一系列适应机制,以应对低磷胁迫。本文提出玉米主要通过根系形态变化适应低磷胁迫的假设,并通过与蚕豆植株在根系形态与生理方面对低磷胁迫反应的比较试验加以验证。【方法】在中国农业大学上庄长期定位试验田进行两年田间实验,玉米和蚕豆分别单作,重复3次。在玉米抽雄前的拔节至大喇叭口期和蚕豆的初花至盛花期两次取样(两年的两次取样时间间隔10~12天),比较研究了不供磷和供磷100 kg/hm2下玉米和蚕豆生长和磷素吸收、根系在0—40 cm土层中分布、以及根际p H值和酸性磷酸酶活性的差异。【结果】1)玉米植株的生物量和含磷量远远高于蚕豆;第一次取样时蚕豆的根冠比高于玉米,而且两种植物低磷下的根冠比高于供磷充足处理。两次取样时玉米的总根长大于蚕豆,两种植物的大部分根系分布在0—20 cm表层土壤,玉米根系在0—10 cm土层的分布更多。2)蚕豆根系的比根长明显大于玉米,但单位根长吸磷量低于玉米,两种植物间的上述差异不受取样时间和供磷水平的影响。3)两次取样时,蚕豆根表的酸性磷酸酶活性均明显高于玉米。玉米根表的酸性磷酸酶活性在两个供磷水平下没有差异。第一次取样时,缺磷蚕豆根表的酸性磷酸酶活性高于供磷充足的蚕豆植株。4)缺磷蚕豆的根际土壤p H值明显低于供磷充足蚕豆;但玉米根际土壤p H值在缺磷和供磷充足条件下无显著差异。【结论】低磷条件下两种植物的根冠比均明显增加。玉米根系单位根长的吸磷量高于蚕豆,并且在含磷量丰富的表层土壤分布有更多根系,但缺磷条件下玉米没有增加根系的质子和酸性磷酸酶的分泌,主要以根系形态变化来适应低磷胁迫。结果支持本文提出的玉米主要通过根系形态变化适应低磷胁迫的假设。但蚕豆在低磷条件下除了增加根系生长外,还具有通过增加质子分泌和根表酸性磷酸酶活性提高根际土壤有效磷浓度的潜力。  相似文献   

3.
分层供水和表层施锌对玉米植株生长和锌吸收的影响   总被引:1,自引:0,他引:1  
进行分层水分隔离盆栽试验,模拟田间不同层次土壤中水分含量分布不均条件,研究表层土壤施锌情况下,玉米植株生长和锌吸收以及根系在表层和底层土壤中的分配。结果表明,施锌明显促进了玉米地上部生长。在土壤表层水分充足时,施锌对植株增长效果较明显,有利于玉米利用土壤水分。缺锌条件下,改善土壤水分并未显著提高玉米生物量。表层土壤干旱时,上下层土壤中根系干物重之比减小,底层土壤中根系分布相对增加,当表层土壤水分增加时,根系在表层土壤中干物重显著增加,分布相对增多。施锌并没有影响根系在不同层次土壤中的分配。表层土壤水分对苗期玉米植株锌吸收总量有显著影响,干旱条件下,玉米植株锌吸收总量下降;底层土壤水分供应状况对玉米锌浓度影响不大,但植株中锌向地上部运转增加。尽管施锌没有提高生长早期玉米根系生长和对底层土壤水分的利用,但本研究表明缺锌旱地土壤上如通过灌溉等措施增加了耕层土壤水分,应该注意施用锌肥,否则严重影响玉米生物量和玉米对土壤水分的利用效率。  相似文献   

4.
[目的]运用高级别分类学分辨率揭示玉米根际和非根际土壤中细菌群落微多样性,并探讨微多样性与土壤有机碳矿化的关系,从更精细的分类学分辨率水平上为玉米根际土壤中微生物驱动的碳循环提供理论依据。[方法]以西北农林科技大学曹新庄试验农场为依托,采取田间生长条件下玉米根际和非根际两种土壤类型。利用高通量测序技术,比较OTUs和ASVs两种分类学分辨率水平上玉米根际和非根际土壤中的细菌群落结构,揭示细菌群落的微多样性。同时通过培养试验检测根际和非根际土壤的有机碳矿化特性。[结果]通过比较OTUs和ASVs两种分类学分辨率水平上的细菌群落,OTUs和ASVs两种方式显示出相似的细菌群落结构。在玉米根际和非根际土壤类型中,ASVs在更高分类学分辨率水平上描绘细菌群落组成,同时揭示了普遍存在于OTUs内的不同菌株或生态型。此外,两种不同生长策略(r-策略和K-策略)细菌物种的相对丰度差异是导致根际和非根际土壤细菌群落结构不同的主要因素。培养试验表明,根际土壤有机碳矿化量显著高于非根际土壤。3 a的连续采样分析结果表明,根系是田间成熟玉米根际和非根际土壤理化性质差异的主要因素而受时间(2019—2021年...  相似文献   

5.
水分和磷对苗期玉米根系形态和磷吸收的耦合效应   总被引:6,自引:0,他引:6  
水分亏缺和土壤缺磷已经成为玉米(Zea mays L.)生产的主要限制性因素,但水分和磷如何调节玉米根系形态和磷吸收尚不完全清楚。本研究采用盆栽土培试验,设置4个水分梯度[田间持水量的35%(W1)、55%(W2)、75%(W3)和100%(W4)]和2个磷处理[高磷:205 mg(P)·kg~(-1);低磷:11 mg(P)·kg~(-1)],探究水分和磷对苗期玉米根系生长和磷吸收的耦合效应。结果表明:(1)不管土壤磷供应如何,玉米苗干重、根干重、总根长和根表面积随水分供应强度的增加呈现先增加后降低的趋势,土壤有效磷含量也表现出相似的变化趋势,根质量比和平均根直径随水分供应强度的增加呈现下降的趋势,植株磷含量和磷累积量随水分供应强度的增加呈现稳定增加的趋势;(2)水分亏缺(W1)和过量供应(W4)均不利于玉米根系生长和干物质累积,水分亏缺(W1)抑制玉米对土壤磷素的获取,水分过量供应(W4)引起土壤磷素的奢侈吸收(W4),轻度的水分胁迫(W2)能够促进玉米根系的生长和干物质累积,减少对土壤磷的奢侈吸收,充足的水分供应(W3)能够促进玉米根系的生长、干物质累积和土壤磷素的吸收;(3)磷供应显著增加了玉米苗干重、根干重(W4除外)、总根长、根表面积、植株磷含量(W4除外)和磷累积量,但降低了玉米的根质量比。(4)两因素方差分析结果表明,水分对苗干重、根干重、根质量比、总根长、根表面积、平均根直径、植株磷含量、植株磷累积量和土壤有效磷含量的相对贡献分别为45.94%、36.71%、67.95%、59.63%、58.34%、81.86%、24.75%、35.66%和3.00%,磷对这些参数的相对贡献分别为34.78%、21.19%、14.84%、9.22%、9.21%、1.56%、35.54%、49.75%和94.40%,可见水分是控制玉米根系形态和干物质累积的关键因子,磷是控制玉米地上磷吸收和土壤有效磷含量的关键因子。总体来说,低磷条件下玉米根系对土壤磷的获取偏向于以根形态为主导的适应策略,高磷条件下玉米根系对土壤磷的获取偏向于以根生理吸收为主导的适应策略。水分和磷之间较好的耦合能够促进玉米根系生长、干物质累积,减少对土壤磷素的奢侈吸收。  相似文献   

6.
不同种植模式对土壤质量及马铃薯生长的影响   总被引:1,自引:0,他引:1  
为探究轮作藜麦、玉米及连作对马铃薯根系生理及根系发育的影响及其机制,比较了3种种植模式(轮作藜麦、轮作玉米及连作)对马铃薯根际土壤微环境、根系生理、根系发育及植株生长的影响,以期为减轻马铃薯连作障碍、筛选较好的轮作模式提供理论依据。结果表明:(1)轮作藜麦、玉米明显降低土壤pH,提高土壤中有机质、碱解氮和有效磷含量,增强土壤肥力相关酶的活性,增加土壤细菌、放线菌数量和细菌与真菌数量比值(B/F),降低真菌数量,改善马铃薯根际土壤微环境,对植株生长发育起到促进作用,表现在马铃薯的株高、茎粗、地上部干重、根干重、单株薯重均有一定程度的增加。(2)轮作藜麦、玉米使得马铃薯根系超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性上升,超氧阴离子产生速率下降,丙二醛(MDA)含量减少,渗透调节物质含量增加,表明通过轮作藜麦和玉米使得连作对马铃薯植株造成的胁迫得到了一定程度缓解。(3)轮作藜麦、玉米显著提高了马铃薯根系总根长、根表面积、根体积、根平均直径和根尖数,说明轮作藜麦及玉米促进了马铃薯根系的生长发育,这与轮作藜麦及玉米改善土壤理化性质、生物学性质及促进马铃薯地上部分的发育相对应。比较轮作藜麦及轮作玉米的整体表现,以轮作玉米调控马铃薯连作障碍的效果较好。  相似文献   

7.
褪黑素调控根系生长和根际互作的机制研究进展   总被引:1,自引:0,他引:1  
【目的】根系生长和根际互作是影响植物对土壤养分吸收的关键因子。根系在土壤中穿插生长,不断改变其形态可塑性,进而改变根系构型,扩大与土壤的接触面积以获取所需养分。同时根系的生理可塑性协同根系形态可塑性显著影响根际互作效应,为植物经济高效获取养分资源提供可能。探究褪黑素等内源生长调节因子对根系形态和生理可塑性的调控机制,揭示通过最大化根际效应强化根际互作的有效途径,对集约化作物体系提高养分利用效率,促进绿色增产增效,具有重要的理论与实践意义。主要进展褪黑素作为新型植物生长调节信号分子,在盐害、干旱和低温等非生物胁迫中具有增强植物抗逆性、改善植物生长等重要调节作用。褪黑素显著改变根系生长,对植物主根生长主要表现为抑制作用,对侧根及不定根的发育和生长具有浓度依赖性调节,从而深刻影响植物根系构型。褪黑素调控根系生长的机制尚不清楚,总结已有进展表明:一方面褪黑素调节光周期,影响光合产物的运输和糖信号,从而调控地下部碳分配和根系生长;另一方面,褪黑素还能与生长素等植物激素互作,参与激素对植物生长调控的信号通路,从而对植物的生长发育和新陈代谢产生影响。这些进展对深入揭示褪黑素调控根系生长发育的机制提供了重要依据。问题与展望根系的生长发育以及根系构型的改变显著影响根际过程和根际互作,褪黑素作为调控因子在不同养分环境条件下显著影响根系的形态可塑性。然而,褪黑素在根际过程和根际互作中的作用机制并不清楚,有关研究亟待加强。深入探究褪黑素参与根际互作的机制,理解褪黑素调控根系生长和根际过程的作用途径,可为集约化农业体系下精准调控作物根系生长,强化根际互作,提高养分利用效率提供科学依据。  相似文献   

8.
模拟矿区复垦接种丛枝菌根缓解伤根对玉米生长影响   总被引:3,自引:2,他引:1  
针对煤炭开采过程中地表塌陷造成植物根系损伤问题,通过人为伤根模拟煤炭开采造成植物根系受损的盆栽试验,以玉米为宿主植物,矿区退化土壤为供试基质,研究接种丛枝菌根真菌对根系受损玉米生长的缓解作用。结果表明,玉米根系受损条件下,接种丛枝菌根真菌缓解了伤根对玉米生长造成的不利影响,促进了玉米的生长,接菌组玉米干质量平均每株要比对照组高出9.74 g。强化接种菌根真菌提高了玉米对土壤中矿质元素的吸收,增加了受损玉米根际土壤中球囊霉素和有机质含量,接菌组玉米根际土壤中总球囊霉素和有机质含量分别比对照组高出48.1%和24.5%。接种菌根改善了玉米根际微环境,有利于矿区退化土壤改良和培肥。通过研究菌根真菌对根系受损植物生长效应,为采煤塌陷区土地复垦与生态重建提供技术支撑。  相似文献   

9.
不同灌溉制度对玉米根系生长及水分利用效率的影响   总被引:21,自引:8,他引:13  
为了探讨不同灌溉制度对玉米根系生长和水分利用效率的影响及基因型间差异,在大型活动防雨棚和棚外田间条件下,利用一组玉米遗传材料杂交种户单四号、父本803和母本天四进行了研究。结果发现玉米杂交种在根系生长、分布和水分利用效率上表现出显著的杂种优势。在充分灌溉条件下,玉米杂交种在浅层的根长密度大于亲本,但在水分亏缺条件下,玉米杂交种根长密度在整个剖面上都显著大于亲本;同一玉米基因型在不同的灌溉制度下根长密度在土壤剖面的分布也不同,拔节期不灌溉条件下玉米根系在深层土壤中的分布较充分灌溉条件下大,保证了玉米对深层土壤水分的充分吸收,而后期灌水延缓了表层根系生长的衰退,产生明显的补偿效应;拔节期干旱而抽雄期和灌浆期灌水显著提高了3种基因型玉米的水分利用效率。通过合理灌溉优化玉米根系分布特性以提高玉米吸水能力和水分利用效率,是节水栽培上的可行途径。  相似文献   

10.
干旱胁迫对玉米根系生长及根际养分的影响   总被引:16,自引:1,他引:16  
通过盆栽模拟干旱试验,测定了干旱胁迫下玉米根系生长情况和根际土壤中速效N、P、K的含量。结果表明,干旱胁迫抑制了玉米拔节期和抽雄-开花期玉米根系的生长,减弱了玉米根系的吸收能力。干旱胁追下玉米根际NH4^+-N、NO3^--N、速效P和速效K均发生根际富集现象。其中有效N和速效K含量高于正常供水.而速效P却呈现低于正常供水的趋势。干旱胁追抑制玉米根系生长、减弱根系吸收能力是玉米减产的重要原因。  相似文献   

11.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   

12.
The aims of this work were to investigate possible reasons for root mortality of maize plants at the reproductive stage and relationships between root mortality and internal sugar and external nitrogen (N) supply. Maize (Zea mays L.) plants were grown in the field in fertile soil and in a greenhouse in quartz sand with sufficient or deficient N supply. Deficient N supply reduced plant growth and total N uptake by 38% and 52%, respectively. The lengths of the seminal roots and of the early initiated adventitious roots of the first two whorls declined after reaching their maximum values before silking, no matter whether the plants were grown in the field or in quartz sand in the greenhouse. The lengths of the adventitious roots from higher nodes of plants grown in quartz sand, irrespective of N supply, did not decrease at the reproductive stage despite of decreasing sugar concentrations. In contrast, under field conditions, the length of adventitious roots from higher nodes decreased during grain filling. Total activity of all roots of greenhouse‐grown plants as deduced from translocation of N and cytokinins in the xylem exudate reached peak values at the end of the growing period, whereas in field‐grown plants N translocation decreased and cytokinin translocation did not change toward the end of the growing period. The results indicate that the pattern of root growth and mortality of maize plants in the reproductive stage was not affected by external N supply. Differences between glasshouse‐ and field‐grown plants are possibly due to effects of soil biota, which have to be further studied.  相似文献   

13.
Studies aiming at quantification of roots growing in soil are often constrained by the lack of suitable methods for continuous, non‐destructive measurements. A system is presented in which maize (Zea mays L.) seedlings were grown in acrylic containers — rhizotrons — in a soil layer 6‐mm thick. These thin‐layer soil rhizotrons facilitate homogeneous soil preparation and non‐destructive observation of root growth. Rhizotrons with plants were placed in a growth chamber on a rack slanted to a 45° angle to promote growth of roots along the transparent acrylic sheet. At 2‐ to 3‐day intervals, rhizotrons were placed on a flatbed scanner to collect digital images from which root length and root diameters were measured using RMS software. Images taken during the course of the experiment were also analyzed with QUACOS software that measures average pixel color values. Color readings obtained were converted to soil water content using images of reference soils of known soil water contents. To verify that roots observed at the surface of the rhizotrons were representative of the total root system in the rhizotrons, they were compared with destructive samples of roots that were carefully washed from soil and analyzed for total root length and root diameter. A significant positive relation was found between visible and washed out roots. However, the influence of soil water content and soil bulk density was reflected on seminal roots rather than first order laterals that are responsible for more than 80 % of the total root length. Changes in soil water content during plant growth could be quantitifed in the range of 0.04 to 0.26 cm3 cm—3 if image areas of 500 x 500 pixel were analyzed and averaged. With spatial resolution of 12 x 12 pixel, however, soil water contents could only be discriminated below 0.09 cm3 cm—3 due to the spatial variation of color readings. Results show that this thin‐layer soil rhizotron system allows researchers to observe and quantify simultaneously the time courses of seedling root development and soil water content without disturbance to the soil or roots.  相似文献   

14.
超高产夏玉米根系时空分布特性   总被引:15,自引:0,他引:15  
比较不同产量水平夏玉米品种根系时空分布的差异,探讨超高产夏玉米品种的根系时空分布特性,为制定高产栽培管理措施提供依据。以超高产夏玉米品种登海661(DH661)为试材,普通品种郑单958(ZD958)为对照,在大田条件下采用土壤剖面取样方法研究了超高产夏玉米DH661与ZD958根系时空分布的差异。在整个生育时期,超高产夏玉米DH661根系干重、根系TTC还原强度、根系TTC还原总量、根系总吸收面积及活跃吸收面积均显著高于ZD958(P0.05),且抽雄后DH661根系干重、吸收面积及活跃吸收面积在60200 cm土壤深层中所占比例显著高于ZD958(P0.05),表明DH661的根系在土壤深层分布多,与土壤接触的有效面积大,生育后期仍保持较高的根系活力,对养分的吸收转运能力强。超高产夏玉米DH661具有发达的根系,且土壤深层根系数量多,根系活力高,有利于吸收深层土壤中较多的水分和养分。与土壤接触的有效面积大,对养分吸收转运能力强,有利于根系获得较多的营养物质,促进地上部光合性能的提高,为地上部籽粒的充实提供保障。  相似文献   

15.
Aerated solution culture is frequently used for studying plant growth. Few comparisons have been made of root growth in solution with that found in soil. The objective of this study was to compare root growth and root hair development in these two mediums. Corn (Zea mays L.) grown in aerated solution at two temperatures (18 and 25°C) and three P concentrations (2, 10, and 500 μmol L‐1) was compared with that in three soils, Raub (Aquic Argiudoll) and two Chalmers (Typic Haplaquoll) silt loams, in a controlled climate chamber over 21d. Corn plant weight and root growth were similar in solution culture and Raub soil when grown at an air and soil temperature of 18°C. At 25°C both yield and root growth were greater in Raub soil, even though P uptake by corn was 7‐fold greater in solution culture. The same difference was found when corn grown at 25°C in solution culture at 3 different P concentrations was compared with that grown in Chalmers soil at two P levels. Percentage of total root length with root hairs, root length and density and consequently root surface area, were all greater in the Chalmers soil than in solution culture. An increase in soil P, resulted in a decrease in root hair growth. No such relationship was found in solution culture. Although the recovery and measurement of plant roots and root hairs is more convenient in solution culture, results from this study indicate that the usefulness of solution culture for determining those factors which control root growth and root hair development in soil is limited.  相似文献   

16.
Rhizosphere processes are highly dynamic in time and space and strongly depend on each other. Key factors influencing pH changes in the rhizosphere are root exudation, respiration, and nutrient supply, which are influenced by soil water content levels. In this study, we measured the real‐time distribution of soil water, pH changes, and oxygen distribution in the rhizosphere of young maize plants using a recently developed imaging approach. Neutron radiography was used to capture the root system and soil water distribution, while fluorescence imaging was employed to map soil pH and soil oxygen changes. Germinated seeds of maize (Zea mays L.) were planted in glass rhizotrons equipped with pH and oxygen‐sensitive sensor foils. After 20 d, the rhizotrons were wetted from the bottom and time‐lapsed images via fluorescence and neutron imaging were taken during the subsequent day and night cycles for 5 d. We found higher water content and stronger acidification in the first 0.5 mm from the root surface compared to the bulk soil, which could be a consequence of root exudation. While lateral roots only slightly acidified their rhizosphere, crown roots induced stronger acidification of up to 1 pH unit. We observed changing oxygen patterns at different soil moisture conditions and increasing towards lateral as well as crown roots while extending laterally with ongoing water logging. Our work indicates that plants alter the rhizosphere pH and oxygen also depending on root type, which may indirectly arise also from differences in age and water content changes. The results presented here were possible only by combining different imaging techniques to examine profiles at the root‐soil interface in a comprehensive way during wetting and drying.  相似文献   

17.
Soil micropores that contain water at or below field capacity cannot be invaded by seminal or first‐order lateral roots of maize plants because their root diameters are larger than 10 μm. Hence, at soil‐water levels below field capacity plant roots must establish a new pore system by displacement of soil particles in order to access soil water. We investigated how decreasing soil water content (SWC) influences growth and morphology of the root system of young maize plants. Plants were grown in rhizotrons 40 cm wide, 50 cm high, and approximately 0.7 cm thick. Five SWC treatments were established by addition of increasing amounts of water to soil and thorough mixing before filling the rhizotrons. No water was added to treatments 1–4 throughout the experiment. Treatment 5 was watered frequently throughout the experiment to serve as a control. Seminal‐root length and SWC in soil layers 0–10, 10–20, 20–30, 30–40, and 40–50 cm were measured at intervals of 2–3 d on scanner images by image analysis. At 15 d after planting, for treatments 1–4 shoot dry weight and total root length were directly related to the amount of water added to the soil, and for treatments 4 and 5, total root length and shoot dry weights were similar. Length of seminal roots visible at the transparent surface of the rhizotron for all treatments was highest in the uppermost soil layer and decreased with distance from the soil surface. For all layers, seminal‐root elongation rate was at maximum above a SWC of 0.17 cm3 cm–3, corresponding to a matric potential of –30 kPa. With decreasing SWC, elongation rate decreased, and 20% of maximum seminal root elongation rate was observed below SWC of 0.05 cm3 cm–3. After destructive harvest for treatment 1–4, number of (root‐) tips per unit length of seminal root was found uninfluenced over the range of initial SWC from 0.10 to 0.26 cm3 cm–3. However, initial SWC close to the permanent wilting point strongly increased number of tips. Average root length of first‐order lateral (FOL) roots increased as initial SWC increased, and the highest length was found for the frequently watered treatment 5. The results of the study suggest that the ability to produce new FOL roots across a wide range of SWC may give maize an adaptive advantage, because FOL root growth can rapidly adapt to changing soil moisture conditions.  相似文献   

18.
玉米生长期土壤抗蚀性特征及其影响因素分析   总被引:6,自引:1,他引:5  
土壤抗蚀性是评定土壤抵抗土壤侵蚀能力的重要参数之一,为了摸清川中丘陵区土壤抗蚀力变化特征,该文通过野外调查与室内分析相结合方法,开展玉米生长期土壤抗蚀性特征及其影响因素研究。研究结果表明:玉米季各生育期土壤抗蚀指数随着土粒浸水时间延长均呈下降趋势,0~20 cm土层抗蚀指数均大于20~40 cm土层。各生育期土壤抗蚀指数总体特征表现为:苗期-小喇叭口期土壤抗蚀指数呈较小的增长趋势,小喇叭口期-抽雄期土壤抗蚀指数呈大幅增加并于抽雄期达最大,抽雄期-成熟期土壤抗蚀指数却呈小幅下降趋势。随玉米生育期推进,土壤抗蚀性总体表现为:抽雄期成熟期大喇叭口期小喇叭口期苗期。玉米植株对土壤抗蚀性的增强效应主要体现在大喇叭口期-成熟期,0~20 cm土层土壤抗蚀性增强效应明显优于20~40 cm土层。土壤抗蚀性与土壤容重和2 mm水稳性团聚体呈显著正相关,与土壤有机质含量和0.25 mm水稳性团聚体分别呈极显著正相关和负相关,与含根量、根系表面积、根系体积和总根长呈极显著正相关。研究成果为区域水土流失防治措施配置及土壤侵蚀预报提供理论依据。  相似文献   

19.
在富营养土壤斑块中根增值对玉米养分吸收和生长的贡献   总被引:1,自引:0,他引:1  
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages.  相似文献   

20.
  • 1 The dependence of the morphology of the maize (Zea mays L.) seminal root system on physical, chemical and biotic parameters was investigated with pot cultures in quartz sand and in a natural loamy sand soil. Low O2-supply to the soil resulted in a substantially smaller root biomass despite a relative increase in total root length. Reduced N-supply also stimulated root length growth, but also enhanced the formation of laterals. The presence of soil microorganisms, in comparison to sterile cultures, resulted in a reduced length of the main roots, and the production of slender laterals with a decreased root hair density. Generally, the structural variability of laterals in response to different growth conditions was much more pronounced than that of the main roots.
  • 2 A major part of the work reported here was dedicated to a detailed study of phosphate (P) acquisition by the maize root system under field conditions. Radioactive labelling of the roots and radioautography of soil cores revealed the in situ distribution pattern of the maize root system. Controlled labelling of the soil with radioactive phosphate allowed the documentation of the development and replenishment of the phosphate depletion zone around roots. Finally, the longevity and phosphate uptake activity of the different parts and tissues of the primary root system of maize was examined by electron microscopy and tracer studies including pulse chase experiments. From these studies the phosphate-acquiring strategy of the maize root system appears as follows: The capability of P uptake decreases in the order: root hairs, 1st order laterals, 2nd order laterals, main root. The life-spans of the components of the maize root system increase by the sequence: root hairs, laterals, main root. Inorganic P uptake, therefore, mainly occurs during the first weeks of root development. Dying back of the root occurs in an ordered manner resulting in a relocation of stored P predominantly into the main root cortex. Furthermore, it could be shown that competition for P between roots of the same or of adjacent maize and/or lupin plants virtually does not occur in situ.
  • 3 The utilization of phytate-P was studied with 14C/32P-labelled Camyo-inositol-hexaphosphate supplied to maize plants grown in sterile quartz sand or in hydroponic cultures. The ratio of P- and C-uptake as well as the incidence of phytate hydrolysis products in the rooting medium indicated the capability of maize roots to acquire P from phytate by enzymatic hydrolysis. This was confirmed by enzyme studies of the root tissues. A specific hydrolyzing enzyme (phytase; molecular weight 51 kD) could be detected in the cell wall of the root, especially in the root tip, which initiates phytate dephosphorylation. Further breakdown is presumably accomplished by monophosphoric phosphohydrolases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号