首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
Controlled crosses in bambara groundnut were attempted between a range of thirty-six bambara groundnut landraces (thirty domesticated (V. subterranea var. subterranea) and six wild (V. subterranea var. spontanea)). Ten F1 seed were produced. Of these, eight germinated producing F2 populations. On seed set, four populations could be unambiguously confirmed as true crosses by F3 seed coat colour. A single F2 population, derived from a domesticated landrace from Botswana (DipC; female parent) crossed with a wild accession collected in Cameroon (VSSP11; male parent) was used to study a range of agronomic and domestication traits. These included; days to emergence, days to flowering, internode (fourth) length at harvest, number of stems per plant, leaf area, Specific Leaf Area (SLA), Carbon Isotope Discrimination (CID), 100 seed weight, testa colour and eye pattern around the hilum. On the basis of variation for internode length and stems per plant, 14 small F3 families were selected and grown under field conditions to further investigate the genetic basis of the ‘spreading’ versus ‘bunched’ plant character, a major difference between wild and cultivated bambara groundnut. Results presented suggest that traits including leaf area, SLA, CID and 100 seed weight are controlled by several genes. In contrast, the variation for traits such as internode length, stems per plant, days to emergence and seed eye pattern around the hilum are likely to be under largely monogenic control. The results of this work are discussed in relation to the domestication of bambara groundnut.  相似文献   

2.
Groundnut rust (Puccinia arachidis Speg.) is an important air borne pathogen, which causes substantial losses in groundnut yield and quality. Although large numbers of accessions were identified as rust resistant in wild, interspecific derivative and cultivated groundnut species, transfer of resistance to well-adapted cultivars is limited due to linkage drag, which worsens yield potential and market acceptance. A F2 mapping population comprising 117 individuals was developed from a cross between the rust resistant parent VG 9514 and rust susceptible parent TAG 24. Rust resistance was governed by single dominant gene in this cross. We identified 11 (out of 160) RAPD primers that exhibited polymorphism between these two parents. Using a modified bulk segregant analysis, primer J7 (5′CCTCTCGACA3′) produced a single coupling phase marker (J71350) and a repulsion phase marker (J71300) linked to rust resistance. Screening of the entire F2 population using primer J7 revealed that the coupling phase marker J71350 was linked with the rust resistance gene at a distance of 18.5 cM. On the other hand, the repulsion phase marker J71300 was completely linked with rust resistance. Additionally, both J71300 (P = 0.00075) and J71350 (P < 0.00001) were significantly associated with the rust resistance. Marker J71300 identified all homozygous rust resistant genotypes in the F2 population and was present in all the eight susceptible genotypes tested for validation. Thus, J71300 should be applicable for marker-assisted selection (MAS) in the groundnut rust resistance breeding programme in India. To the best of our knowledge this is the first report on the identification of RAPD markers linked to rust resistance in groundnut.  相似文献   

3.
In greenhouse tests, two inbred lines of faba bean, I 40 and I 25, proved to be nodulation resistant and F2 progenies were used to determine the genetic control of this nodulation deficiency. The defect is strain-specific for the Rhizobium strains St 48 and St 53. In inbred line I 40, the deficient nodulation character is controlled by a dominant gene which is called Sym-2, while another recessive gene sym-3 is assumed for line I 25; Sym-2 is epistatic over sym-3.  相似文献   

4.
Summary Derivatives of a cross between cultivated peanuts, Arachis hypogaea L. (2n=40), and the wild species collection GKP 10017 (2n=20) were compared morphologically, for leafspot resistance and for yield. The objective of the study was to determine the effects of wild species germplasm on the A. hypogaea genome. The sterile F1 hybrid which resulted from crossing the two species was treated with colchicine to restore fertility at the 6x ploidy level. The resulting hexaploid was cytologically unstable and progeny lost chromosomes until stability was regained at the 2n=40 chromosome level. Forty-seven characters were used to analyze the variation among plants in the tetraploid interspecific hybrid population. The plants were compared to four cultivated lines plus GKP 10017. Many hybrids were intermediate to the two parents in morphology. Individual traits such as growth habit, pod and seed size, elongation of the constricted area between pods, nodulation and leaflet size were altered by the presence of GKP 10017 germplasm in many of the hybrid plants. Cercospora arachidicola Hori and Cercosporidium personatum (Berk. & Curt.) Deighton resistances were evaluated for all plants. Several hybrids had few lesions due to either leafspot pathogen. In addition, 24 largeseeded interspecific hybrid selections were compared to the cultivated variety NC 5 for yield. Five selections were superior to both parents at p=0.01. Morphology, disease resistance and yields appeared to be greatly influenced by the wild species GKP 10017 germplasm in plants of the interspecific hybrid population. The potentials of using wild species for improvement of the cultivated peanut are discussed.Paper number 5948 of the journal series of the North Carolina Agricultural Research Service, Raleigh, NC 27650. The investigation was supported in part by ICRISAT and SEA-CR grant no. 701-15-51.  相似文献   

5.
Arthur T. Trese 《Euphytica》1995,81(3):279-282
Summary Rhizobium fredii USDA257 will effectively nodulate Asiatic and unimproved soybean cultivars, such as Peking, but most of the highly selected North American cultivars, such as McCall, produce at most rudimentary, ineffective nodules. In R. fredii USDA 257, a locus containing 6 open reading frames is responsible for this cultivar specific incompatibility. To examine the genetic control of incompatability on the part of the host, the soybean cultivars Peking and McCall were crossed to produce five F1 progeny. These plants and their selfed progeny were tested for nodulation with USDA257. Resistance to nodulation was found to be conditioned by a single dominant gene. These results indicate that, in soybean, strain specific resistance to nodulation can result from gene(s)-for-gene interactions.  相似文献   

6.
Summary Introgression of germplasm from diploid wild Arachis species to A. hypogaea has great potential for improving pest resistance in cultivated peanuts. This investigation evaluated methods for incorporating exotic germplasm into cultivated peanuts, especially for Cercospora arachidicola Hori resistance. Interspecific hybrids between A. hypogaea (cvs. NC 2 and NC 5) and the wild species A. cardenasii Krap. et Greg. nom. nud. and A. chacoense Krap. et Greg. nom. nud. were analyzed cytologically and for leafspot resistance. All F1 hybrids were sterile, had irregular meiosis, and very few multivalents. They were highly resistant to C. arachidicola in field tests and had a 10-fold reduction of conidia per lesion in the greenhouse as compared to A. hypogaea cultivars. After colchicine treatments of F1 hybrids, hexaploids (2n=60) and aneuploids (2n=54, 56, 63) were observed. The hexaploids had up to 18 univalents per pollen mother cell and very few multivalents, indicating a low frequency of intergenomic chromosome pairing. For C. arachidicola resistance, significant differences were not found among wild species parents, F1 hybrids and two generations of hexaploids. Most hexaploids were stable at 2n=60 and embryos aborted when backcrosses with the respective wild species were attempted. However, when hexaploids were backcrossed to A. hypogaea, several fertile pentaploid (2n=50) offspring were obtained. Use of self-pollinating pentaploids is believed to be the quickest method to recover 40-chromosome hybrid derivatives in these hybrids.  相似文献   

7.
Summary Some plants without pods but with gynophores were observed in two F4 progenies of two crosses of goundnut (Arachis hypogaea L.). The flowers on these plants had translucent white anthers with no or a few sterile pollen grains. Three such plants in the succeeding generation were hand pollinated with pollen from a short-duration Indian cv. JL 24. The resulting F1 hybrid plants (male sterile x JL 24) were normal. Chi-square tests for segregation for male fertile and male sterile plants in F2 and F3 generations indicated that the male sterility in these crosses of groundnut is governed by two recessive genes. We designate these genes as ms1 and ms2 with ms1ms1ms2ms2 being a male sterile genotype.Submitted as ICRISAT J. A. No. 1812.  相似文献   

8.
Summary A genetic system is proposed for establishing desirable strains of Rhizobium japonicum in soybean fields against the competition of aggressive but less productive indigenous strains. This system requires soybean cultivars which substantially exclude the indigenous strains while selectively admitting specific introduced strains. Rhizobium strains were identified which were infective, both in sand and in soil culture, with a host genotype (rj1rj1) which excludes most indigenous strains. Rhizobium infectivity was associated, for the first time, with the propensity to induce symptoms caused by rhizobitoxine production by the bacteria. The basis of this association is unknown. A possible enabling role for rhizobitoxine, or a precursor or derivative of rhizobitoxine, in the infection process is discussed.  相似文献   

9.
Summary Crossability and cytology were examined in F1, F2, B1 and hybridsplants of F1 hybrids of Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana, respectively. The F2 plants were obtained after self-and open pollination of the F1 hybrids. The B1 and hybrid plants were produced after the F1 hybrids backcrosses with B. campestris and crossed with B. napus, respectively. After crossing the F1 hybrids, many seeds of the F2, B1 and hybrid plants were harvested. Multivalent formation was high in the chromsome configuration for the PMCs of F2, B1 and hybrid plants, suggesting that crossing over might occur between them. Many different types of aneuploids were obtained in the progenies of the F2, B1 and hybrid plants. It is suggested that different types of normal egg cells may be produced by one-by-one or little-by-little chromosome addition. The possibility is discussed of gene transfer from B. bourgeaui, B. cretica and B. montana, to cultivated plants, B. campestris and B. napus.  相似文献   

10.
Summary Crosses between a wild species C. chacoense and three cultivated species of chili pepper viz. C. annuum, C. frutescens and C. chinense yielded hybrids when C. chacoense was the seed parent but the reciprocal crosses were unsuccessful. C. chacoense × C. annuum F1 hybrids were partly fertile and therefore an F2 population could be raised; the other two F1 hybrids were totally sterile. Chromosome pairing in the F1 plants resulted largely in bivalents and a few multivalents and univalents. The genomes of the four species share large homologies and the role of chromosome structural changes in genome differentiation is suggested. Hybrid sterility is the major reproductive isolation mechanism.  相似文献   

11.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

12.
The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.  相似文献   

13.
Summary F2 plants of five, and F3 plants of three, crosses between genotypes carrying the race-specific resistance gene Xa-4 and genotypes not carrying this gene were inoculated with two isolates of Xanthomonas campestris pv. oryzae. Half the tillers of each plant received isolate PX061, avirulent on the Xa-4 gene, the other half of the tillers received isolate PX099, virulent for the Xa-4 gene. The F2 and F3 populations segregated for a single dominant resistance gene, Xa-4.The parental, F2 and F3 genotypes not carrying Xa-4 had mean lesion lengths between 28 and 29 cm for both isolates. The Xa-4 carrying parents showed a mean lesion length of 2.7 cm with the avirulent isolate and of 12.4 cm with the virulent isolate. The Xa-4 carrying F2 and F3 genotypes had mean lesion lengths of 5.2 and 20.1 cm for the two isolates, respectively. These observations strongly indicate that the Xa-4 gene, carried by the rice genotypes studied (IR28, Cisadane and BR51-282-8), had a considerable residual effect when exposed to virulent isolate PXO99.  相似文献   

14.
Summary Knowledge of inheritance of early maturity or its components is important to groundnut breeders in developing short-duration cultivars. This study was conducted to determine the inheritance of two components of early maturity: days to first flower from sowing, and days to accumulation of 25 flowers from the appearance of first flower, using three groundnut genotypes. Two early-maturing (Chico and Gangapuri) and one late-maturing (M 13) genotypes were crossed in all possible combinations, including reciprocals. The parents, F1, F2, F3, and backcross populations were evaluated for days to first flower from sowing, and for days to accumulation of 25 flowers. The data suggest that days to first flower in the crosses studied is governed by a single gene with additive gene action. Chico and Gangapuri possess the same allele for this component of earliness. Three independent genes with complete dominance at each locus appear to control the days to accumulation of 25 flowers. In crosses between late (M 13) and early (Chico or Gangapuri) parents, a segregation pattern suggesting dominant-recessive epistasis (13 late:3 early) was observed for this component. Segregation in the F2 generation (1 late:15 early) of both early parents (Chico x Gangapuri) indicated that the genes for early accumulation of flowers in these two parents are at different loci.Submitted as ICRISAT J.A. No. 1557.  相似文献   

15.
The genetics of resistance to Phomopsis stem blight caused by Diaporthe toxica Will., Highet, Gams & Sivasith. in narrow-leafed lupin (Lupinus angustifolius L.) was studied in crosses between resistant cv. Merrit, very resistant breeding line 75A:258 and susceptible cv. Unicrop. A non-destructive glasshouse infection test was developed to assess resistance in the F1, F2, selected F2-derived F3 (F2:3) families, and in selfed parent plants. The F1 of Unicrop × 75A:258 (and reciprocal cross) was very resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible), which suggested the presence of a single dominant allele for resistance in 75A:258. In Merrit × Unicrop (and reciprocal), the F1 was moderately resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible). Thus Merrit appeared to carry an incompletely dominant resistance allele for resistance. The F1 of Merrit × 75A:258 (and reciprocal) was very resistant and the F2 segregated in a ratio of 15:1 (resistant: susceptible), which supported the existence of independently segregating resistance alleles for resistance in 75A:258 and Merrit. Alleles at loci for early flowering (Ku) and speckled seeds (for which we propose the symbol Spk) segregated normally and independently of the resistance alleles. Resistant F2 plants gave rise to uniformly resistant or segregating F2:3 families, whereas susceptible F2 plants gave rise only to susceptible F2:3 families. However, the variation in resistance in the F2 and some F2:3 families of crosses involving 75A:258, from moderately to extremely resistant, was greater than that expected by chance or environmental variation. We propose the symbols Phr1 to describe the dominant resistance allele in 75A:258, and Phr2 for the incompletely dominant resistance allele in Merrit. Phr1 appears to be epistatic to Phr2, and expression of Phr1 may be altered by independently segregating modifier allele(s). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Inheritance studies were conducted to determine the genetic basis of resistance in pepper against one Tospovirus isolate classified as tomato spotted wilt virus (TSWV). F1, backcrosses and F2 populations were developed using the resistant parent Capsicum chinense PI 159236 (CNPH 679) and the susceptible parent C. annuum Magda (CNPH 192). Segregation ratios strongly indicated that the resistant response (a localization, hypersensitive-like reaction) to TSWV fits a single-dominant gene model. Under our experimental conditions, the penetrance of this gene was very high. This gene (tentatively named Tsw) is highly effective only against TSWV isolates. The resistance governed by the Tsw gene was not effective against isolates belonging to tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV), two other previously described Tospovirus species.  相似文献   

17.
In a self-fertilised crop like lentil, the identification of transgressive segregants for economically important trait such as seed yield is an important aspect of any practical breeding programme. The prediction of expected transgressive segregants in F1 generation obtained as a ratio of additive genic effect [d] and additive variance (D) i.e. [d]/√D was studied in 28 crosses of lentil generated in a diallel fashion involving four parents each of macrosperma (exotic) and microsperma (Indian) types, respectively, resulting in three hybridization groups. The seed material advanced to F2, F3 and F4 generations through single seed descent method was evaluated to determine the observed transgressive segregants for seed yield/plant. The observed frequency of crosses showing more than 20% transgressive segregants in F2 to F4 generations were exhibited in 9(32%) crosses, of which 7(77%) crosses were of macrosperma × microsperma type. Genotypes Precoz and HPL-5 of the exotic group (macrosperma) produced maximum number of transgressive segregants with the genotypes L-259, L-4145 and PL-406 of the Indian origin (microsperma). Goodness of fit (non-significant χ2 value) in F2 generation was observed for 19(68%) crosses of the total genepool, out of which 9(56%) crosses each in F3 and F4 generation belonged to the macrosperma × microsperma group, depicting it as the gene pool of paramount importance to obtain maximum transgressive segregants, therefore establishing the efficacy of the method used.  相似文献   

18.
Fusarium head blight (FHB), caused by Fusarium graminearum and Fusarium culmorum, is a devastating disease in cereals. This study was undertaken to estimate progeny means and variances in each of five winter triticale and winter wheat crosses using unselected F2−derived lines in F4 or F5 generation bulked at harvest of the previous generation. Fifty (triticale) and 95 (wheat) progeny per cross were inoculated in two (triticale) or three (wheat) field environments. FHB rating was assessed on a whole-plot basis. Mean disease severities of the parents ranged from 2.3 to 6.4 in triticale and from 3.1 to 6.5 in wheat on a 1-to-9 scale (1 = symptomless, 9 = 100% infected). The midparent values generally resembled the means of their derived progeny. Significant (P < 0.01) genotypic variance was detected within each cross, but genotype × environment interaction and error variances were also high for both crops. Medium to high entry-mean heritabilities (0.6–0.8) underline the feasibility of selecting F2-derived bulks on a plot basis in several environments. Phenotypic correlation of FHB resistance between generation F2:4 and F2:5 was r = 0.87 (P < 0.01) tested across 150 wheat bulks at two locations. Our estimates of selection gain are encouraging for breeders to improve FHB resistance in triticale and wheat by recurrent selection within adapted materials.  相似文献   

19.
L. Crespel  S. Gudin 《Euphytica》2003,133(1):65-69
The objective of this study was to determine the mode of inheritance of field resistance to downy mildew (Peronospora parasitica (Pers. ex Fr.) Fr.) in broccoli (Brassica oleracea var.italica) at the adult plant stage. The F1, F2 and F3 progeny of resistant and susceptible plants of broccoli were tested in the field under natural infection, in central Portugal, from August to December in two successive years. The plants were evaluated for resistance to downy mildew at maturity using a five-class scale of increasing susceptibility to the disease, which took into account the number of infected leaves and the size of the sporulating lesions. The F1 was completely resistant, the F2 segregated a clear 3 resistant: 1susceptible and the F3 confirmed the F2 segregation, which suggests a dominant character controlled by a single locus. This resistance has good potencial for direct use in commercial broccoli breeding or for transfer to other Brassica vegetables. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号