首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
杨梅SRAP-PCR反应体系的建立与优化   总被引:1,自引:0,他引:1  
为了建立适宜杨梅基因组DNA的SRAP-PCR扩增体系。以杨梅基因组DNA为模板,通过正交试验设计,从Mg2+、模板DNA、dNTPs、Tap DNA聚合酶和引物5种因素4个水平对杨梅SRAP-PCR反应体系进行优化。各因素对杨梅SRAP-PCR反应的影响程度从大到小依次为:Mg2+,模板DNA,dNTP,引物和Taq DNA聚合酶;建立的杨梅SRAP-PCR最佳反应体系为25μL反应体系中含2.5 mmol/L Mg2+、50 ng DNA模板、0.25 mmol/L dNTPs、0.15 μmol/L引物和1.5 U Taq DNA聚合酶。这一体系的建立为今后利用SRAP-PCR技术开展杨梅分子遗传学研究打下了基础。  相似文献   

2.
利用正交设计优化牡丹SRAP-PCR反应体系   总被引:13,自引:2,他引:11  
利用正交设计L16(45对牡丹SRAP-PCR反应体系的五因素(Taq,Mg2+,模板DNA,dNTP,引物)在四个水平上进行优化试验,得出如下结论:各因素水平变化对PCR反应的影响从大到小依次为:Tap,引物,dNTPs,Mg2+,模板DNA;筛选出各反应因素的最佳水平,建立牡丹SRAP-PCR反应的最佳体系(25μL)为:Taq酶0.5 U,Mg2+2.0 mmol/L,模板DNA 50 ng,dNTF 0.2 mmol/L,引物0.30 μmol/L.这一优化系统的建立为今后利用SRAP标记技术对牡丹进行相关研究提供了帮助.  相似文献   

3.
本研究利用正交设计L16(45)对花生SRAP-PCR反应体系的5因素(引物,Taq酶,Mg2+,模板DNA和dNTP)在4水平上进行优化试验,结果表明,各因素的不同水平对PCR反应结果都有显著的影响,其中引物浓度的影响最大;最佳反应体系20μL包含:引物0.4μmol/L,Taq酶1U,Mg2+2.5mmol/L,模板DNA30ng,dNTP0.2mmol/L,不足部分以ddH2O补足。这一体系的建立为今后利用SRAP标记技术对花生进行分子遗传学基础研究提供了有力的支持。  相似文献   

4.
柑桔SRAP和ISSR分子标记技术体系的建立与优化   总被引:16,自引:0,他引:16  
通过对PCR反应程序、反应体系(DNA模板量、PCR反应体积、Mg2 浓度、dNTP浓度、Taq酶用量、引物量)、电泳检测方法的系统优化,建立了柑桔SRAP-PCR和ISSR-PCR体系;以此进行大规模引物筛选,从而建立了柑桔SRAP和ISSR分子标记技术体系.SRAP-PCR:25μL体系,模板DNA25ng,Tris-HCl10 mmol/L,KCl50 mmol/L,Mg2 1.2 mmol/L,dNTP 120 μmol/L,Taq酶1.5U,引物0.4μmol/L,反应程序为94℃预变性5min,35个循环(94℃ 30s,47℃ 1min,72℃ 1min),72℃延伸10min;ISSR-PCR:25μL体系,模板DNA25ng,Tris-HCl10mmol/L,KCl50mmol/L,Mg2 1.6 mmol/L,dNTP200μmol/L,Taq酶1 U,引物0.8μmol/L.筛选出稳定性好、多态性高的24对SRAP引物和13条ISSR引物.  相似文献   

5.
为建立成熟可靠的红毛丹SRAP-PCR扩增检测技术体系,本研究首先采用单因素实验设计,对反应体系中的DNA模板、Mg2+、d NTPs、Taq DNA聚合酶和引物浓度等5个主要影响因素,设置不同的水平梯度,筛选出适宜的因子范围;在此基础上,进一步采用L16(45)正交设计,建立了红毛丹SRAP-PCR最佳反应体系:20μL体系中包含DNA模板20 ng、d NTPs 0.25 mmol/L、引物0.6μmol/L、r Taq酶1.0 U、Mg2+2.5 mmol/L。并利用优化的反应体系,从116对SRAP引物组合中筛选出37对扩增条带清晰、产物多态性较好的引物。本研究建立的SRAP-PCR体系及筛选的引物,将为红毛丹从分子水平进行种质资源遗传多样性分析、品种指纹图谱构建等研究提供基础。  相似文献   

6.
利用正交试验优化玫瑰SRAP-PCR反应体系   总被引:2,自引:1,他引:1  
采用L16(45)正交试验对玫瑰SRAP-PCR反应体系进行优化。结果表明,各因素对PCR反应的影响程度从大到小依次为:Taq酶,dNTPs,引物,Mg2+,模板;建立了玫瑰SRAP-PCR反应最佳体系(25μL)为Mg2+2.0mmol/L,dNTPs0.20mmol/L,Taq酶1.5U,引物0.25μmol/L,模板1.0ng/μL;采用不同的模板和引物对体系进行验证,表明该体系适合于玫瑰的SRAP-PCR反应。  相似文献   

7.
利用正交设计优化烟草SRAP反应体系   总被引:11,自引:0,他引:11  
利用正交设计L16(45)对烟草SRAP-PCR反应体系的五因素(Taq酶,Mg2 模板DNA,dNTP,引物)在四个水平上进行优化试验,PCR结果用统计软件SPSS V13.0分析,得出如下结论:各因素的不同水平对PCR反应结果都有显著的影响,其中Taq酶量影响最大;筛选出各反应因素的最佳水平,建立烟草SRAP-PCR反应的最佳体系(25μL)为:Taq酶1.0 U,Mg2 1.5 mmol/L,模板DNA 30.00~120.00 ng,dNTP0.1 mmol/L,引物0.40 μmol/L.最后,应用烟草SRAP-PCR最佳反应体系对PCR扩增程序中的退火温度及循环次数进行了筛选,得出SRAP-PCR扩增以52℃退火温度、35个循环次数为最佳.这一优化系统的建立为今后利用SRAP标记技术对烟草进行基础研究提供了一个标准化的程序.  相似文献   

8.
食用向日葵SSR-PCR反应体系的优化   总被引:1,自引:0,他引:1  
为建立食用向日葵分子标记反应体系,以食用向日葵四叶期叶片为DNA模板提取材料,采用单因素试验和正交试验设计,对SSR-PCR反应体系中的6因素(10×PCR Buffer、Mg2+、d NTPs、引物、Taq DNA聚合酶和DNA模板)在5水平上进行正交优化试验,并比较了不同浓度Mg2+、Taq DNA聚合酶、模板DNA对扩增效果的影响,结果表明,各因素水平变化对反应体系的影响为Mg2+Taq DNA聚合酶(引物)DNA模板10×PCR Bufferd NTPs。最终建立食用向日葵SSR-PCR最佳反应体系为:在总体系为20μL的SSR-PCR反应体系中包括10×PCR Buffer 0.2mmol/L、Mg2+2.0 mmol/L、d NTPs 1.8 mmol/L、Taq DNA聚合酶0.2 U、DNA 50 ng、引物1.5 mmol/L。  相似文献   

9.
为建立高粱抗丝黑穗病基因最佳的SRAP-PCR反应体系,进一步筛选与抗病基因相关的SRAP标记。本研究采用单因素与正交设计相结合的方法,对影响高粱SRAP-PCR体系的5个因素Taq酶、Mg2+、模板DNA、d NTPs和引物进行优化,以期筛选出最优的高粱抗丝黑穗病基因SRAP-PCR反应体系。研究表明:在优化得到的20μL的高粱SRAP-PCR体系中,模板DNA的用量为20.0 ng,Taq DNA聚合酶的用量为0.14 U,Mg2+的浓度为3.0 mmol/L,d NTPs浓度为0.3 mmol/L,引物的浓度为0.5μmol/L。各因素对反应体系影响大小依次为:引物浓度DNA用量Taq DNA聚合酶浓度Mg2+浓度=d NTPs浓度。本研究将为高粱抗性基因的定位与功能研究提供基础数据与技术支持。  相似文献   

10.
为建立最佳的宫粉紫荆SRAP-PCR反应体系,采用单因素和L16(45)正交试验设计对反应体系中的模板DNA、Mg2+、引物浓度、d NTPs和Taq聚合酶进行优化。表明宫粉紫荆SRAP-PCR 25μL反应体系的最佳组合为:模板DNA 50 ng、Mg2+2.25 mmol/L、引物0.25μmol/L、d NTPs 0.30 mmol/L、Taq酶1.5 U。并利用优化的SRAP-PCR体系进行验证,表明不同的宫粉紫荆样本均能扩增出清晰且带型基本一致的谱带,表明本试验建立的SRAP-PCR体系稳定,可用于今后开展宫粉紫荆种质资源遗传多样性研究、品种鉴定、优良品种筛选和近缘种杂交育种等研究工作。  相似文献   

11.
为了建立光萼荷属植物(Aechmea) SRAP-PCR反应体系,为今后光萼荷属植物种质资源研究提供技术支持,本研究通过L16(45)正交试验设计,对光萼荷属植物SRAP反应体系中的Mg2+、dNTPs、Taq DNA聚合酶、引物和模板DNA浓度等5个因素进行优化实验,并筛选多态性SRAP引物组合。结果表明,光萼荷属植物的最佳SRAP反应体系为1.50 mmol/L Mg2+、400 μmol/L dNTPs、1.5 U Taq DNA聚合酶、15 μmol/L引物、30 ng模板DNA及1×PCR buffer。各因素对SRAP-PCR扩增反应结果影响的差异较大,依次为模板DNA>Taq DNA聚合酶>dNTPs>引物>Mg2+。从56对SRAP引物组合中筛选出51对扩增条带清晰、多态性丰富的SRAP引物组合,多态性引物比率达90%以上。通过不同光萼荷属植物和不同引物组合对该反应体系进行验证,均获得了多态性丰富、条带清晰的扩增图谱,表明本研究建立的光萼荷属植物SRAP-PCR反应体系稳定可靠。  相似文献   

12.
番石榴SRAP反应体系的建立与正交优化   总被引:1,自引:1,他引:0  
采用正交设计方法,对影响番石榴SRAP反应体系的Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA浓度等进行了优化,建立了适用于番石榴的SRAP反应体系。该优化的20 μL反应体系中包含2.5 mmol/L Mg2+,0.15 mmol/L dNTPs,0.4 μmol/L引物,1.5 U Taq DNA聚合酶和20 ng模板DNA。利用该优化体系通过64对SRAP引物组合对5份番石榴材料进行了SRAP-PCR扩增,结果表明SRAP引物及优化后的反应体系能够有效地用于番石榴种质资源鉴定及遗传多样性分析等研究。  相似文献   

13.
油葵SRAP-PCR反应体系的建立与优化   总被引:4,自引:3,他引:1  
为建立油葵SRAP-PCR的反应体系,采用单因素试验法,对Mg2+、dNTPs、引物浓度、Taq DNA聚合酶、模板DNA分别设置5~7个水平梯度,筛选出适宜的用量范围,以此为基础,再通过L16(45)正交试验设计,对影响SRAP-PCR的5个因素进行优化,建立了油葵SRAP-PCR的最佳反应体系:20 μL体系中含10×Buffer 2 μL,Mg2+ 2.75 mmol/L,dNTPs 0.18 mmol/L,Taq DNA聚合酶1.25 U,正反引物各0.3 μmol/L,模板DNA 60 ng,最佳退火温度为52.2℃。用22份油葵材料对该体系进行验证,结果显示扩增条带清晰、多态性高,说明该体系稳定可靠,可有效的用于油葵种质资源的鉴定、遗传图谱构建等研究。  相似文献   

14.
橄榄SRAP-PCR体系的建立和优化   总被引:2,自引:0,他引:2  
以橄榄品种为材料,采用L16(45)的正交试验设计,对影响PCR反应的Taq酶量、Mg2+浓度、模板DNA含量、dNTPs浓度和引物浓度5个因素进行了SRAP-PCR扩增反应条件优化研究,并利用反应体系对11个橄榄品种进行了SRAP-PCR扩增。结果表明:在20μl体系中,Taq酶1.5U、Mg2+2.5 mmol/L、模板DNA 60ng、dNTPs 0.2 mmol/L和引物0.15μmol/L时的扩增效果最好;利用该体系,SRAP标记引物对Me5- Em2在11个橄榄品种中可以扩增出7条清晰的多态性条带。  相似文献   

15.
能源植物芒的SRAP分子标记体系建立与优化   总被引:2,自引:1,他引:1  
以芒总DNA为材料,利用单因素分析法对影响SRAP反应体系的Mg2+、dNTPs、TaqDNA聚合酶等三个因素进行了优化。研究结果表明:最佳的10μl反应体系为1 μL 10xTaq Buffer、DNA 20 ng、Mg2+ 2 mmol/L、dNTPs 0.5 mmol/L、TaqDNA聚合酶0.6 U、正反向Primer浓度均为0.8μmol/L。SRAP-PCR反应体系的建立和优化,为今后利用SRAP标记技术开展芒的遗传多样性研究和分子标记辅助选择育种研究提供了一个技术支持。  相似文献   

16.
牡丹杂交品系SRAP-PCR反应体系优化及引物筛选   总被引:2,自引:2,他引:0  
通过研究牡丹杂交新品系的遗传多样性,解决其在牡丹品种分类体系中位置的问题。利用正交设计,从Mg2+、dNTPs、引物浓度、DNA聚合酶和不同模板DNA浓度5种因素4个水平来优化牡丹杂交品系SRAP-PCR反应体系,对引物进行筛选。建立牡丹杂交品系SRAP-PCR反应最佳体系(25 μL)为: 2.0 mmol/L Mg2+、1.5 U Taq酶、0.25 mmol/L dNTPs、2 ng/μL模板DNA、0.25 μmol/L引物;运用试验结果从100对引物中筛选出扩增条带清晰、多态性丰富的SRAP引物30对。优化体系的建立及引物的筛选,可为利用SRAP标记技术研究牡丹杂交品系的遗传多样性及亲缘关系提供技术基础和理论依据。  相似文献   

17.
为了确定绣球属植物SRAP-PCR最适宜的反应体系,以19种绣球属植物为材料,利用单因素分析法对影响SRAP-PCR反应体系的5个因素(DNA模板量,Mg2+浓度,dNTPs浓度,Taq聚合酶量和引物浓度)在11个水平上进行优化试验。结果表明,最佳的25 μL反应体系为:10×PCR Buffer 2.5 μL,DNA模板量30 ng,Mg2+浓度1.6 mmol/L、dNTPs浓度0.6 mmol/L,Taq聚合酶量3.5 U,引物浓度为0.2 μmol/L。单因素分析法获得的最佳反应体系适合绣球属植物SRAP的遗传多样性研究。  相似文献   

18.
草莓SRAP反应体系优化及引物筛选   总被引:1,自引:1,他引:0  
为建立草莓SRAP-PCR适宜的反应体系,以草莓品种‘丰香’为实验材料,采用单因素实验设计,对Mg2+、dNTPs、Taq DNA聚合酶及引物浓度4个因素4水平进行优化,并在此基础上对模板DNA的浓度和退火温度进行优化。结果表明,草莓SRAP-PCR最佳反应体系为:20μL的反应体系中含10×PCR buffer 2μL,Mg2+ 2.0 mmol/L,dNTPs 0.3 mmol/L,正反向引物各为0.6μmol/L,Taq DNA聚合酶1.0 U,模板DNA为100 ng。扩增程序为:94℃预变性5 min;94℃变性1 min,35℃退火1 min,72℃延伸1 min,共5个循环;94℃变性1 min,54℃退火1 min,72℃延伸1 min,共35个循环;72℃延伸5 min;4℃保存。利用该优化体系筛选引物,从110对SRAP引物组合中筛选出29对条带清晰丰富、多态性好的引物,证明了此优化体系稳定可靠,能够用于草莓种质资源的鉴定、分子标记辅助育种等研究。  相似文献   

19.
龙眼SRAP反应体系的建立和优化   总被引:3,自引:1,他引:2  
采用分步优化的方法对影响龙眼SRAP-PCR反应的模板DNA用量、Mg2+浓度、dNTP浓度、引物浓度、TagDNA聚合酶用量等进行了研究。确立了适合龙眼SRAP分析的反应体系,即体系总体积25μl,包含1×PCR Buffer ,Mg2+ 2.0mmol/L,dNTPs 0.5 mmol/L,引物0.3μmol/L,模板DNA 10ng, TaqDNA聚合酶1.5 U。结果表明,该体系能很好地满足龙眼基因组SRAP扩增的要求,SRAP标记应用于龙眼遗传研究是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号