首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于物联网的农业大棚环境监测系统设计   总被引:1,自引:0,他引:1  
为实现农业大棚环境信息的实时远程监测和管理,设计基于物联网的农业大棚环境监测系统。系统依据物联网架构设计,感知层通过单片机实时采集空气温湿度、土壤温湿度、二氧化碳浓度与光照强度6个环境参数,通过GPRS将数据传输到网络层。网络服务层基于云服务器,提供业务逻辑管理功能,建立数据中心。应用层采用Bootstrap和ECharts等网页技术,提供响应式布局的可视化交互界面。系统实现农业大棚环境信息采集与远程监测,提高农业大棚的管理水平。  相似文献   

2.
为解决农业大棚环境数据采集不方便、不准确的问题,课题组以物联网技术为基础,集成传感器、无线通信网络、嵌入式系统、组态控制等多种技术,设计了一套基于ZigBee的农业大棚监测系统,实现对大棚内农作物生长数据的精准采集和对大棚内数据的实时监测,并通过数据融合和滤波算法进行了数据优化。测试结果表明:通过功能测试和数据分析可以验证系统功能模块均能够平稳、有效地运行;通过监控界面可以监测农业大棚的实际运行状况,提高农业管理人员的工作效率,监测效果良好。证明该系统可以实现对农业数据的精准采集和显示,能给农业从业者提供准确的决策依据。  相似文献   

3.
传统温室大棚种植手段单一,对农作物生长信息和温室内环境信息的监测仍需要依靠人工进行,导致农业生产效率低下、数据监测不准确、实时性不强,对产量影响较大。为此,设计了基于PLC的农业温室大棚监测设备,将PLC技术、传感器技术与监测设备相结合,完成了温室大棚监测设备的总体结构设计,并通过硬件选型和硬件设计,完成硬件模块电路设计、PLC控制系统的I/O地址分配表设计和外部接线设计、软件流程设计。实验结果表明:智能监测设备能够实时检测温室大棚内的环境温湿度、CO_2浓度、光照度等参数,并能够通过PLC控制器完成对相关参数的智能控制。该智能监测设备监测参数全面,控制精度高,能够在较大程度上节约水资源和农业生产成本,提高了温室大棚种植效率。  相似文献   

4.
【目的】为突破农业领域数据采集困难与智能化程度低等技术发展瓶颈,建设农业物联网,制定农业物联网解决方案至关重要。【方法】本研究利用嵌入式技术、PLC技术、ZigBee组网、计算机网络技术等物联网技术,通过搭建物联网技术在智慧农业的网络链路环境,设计了物联网技术的四层结构图,包括硬件层、网关层、云平台层和应用层。设计了智慧农业网络链路、大棚种植自动化管理控制系统、环境监测子系统和安防监控子系统。【结果】通过建设实时、动态的物联网信息采集系统,可以实现快速、多维、多尺度的信息实时监测,实现农牧业智能监控、智能控制以及农业的可视化、精细化管理。【结论】在智慧农业中应用物联网技术,实现农业生产的自动化控制、信息共享等功能,促进传统农业转型升级,助推我国农业的现代化发展。  相似文献   

5.
针对农业大棚种植作物对环境参数的要求,提出了一种基于物联网技术的农业生产监控系统。基于CC2530核心芯片完成无线传感器网络的组建,并构建系统网关,准确获取环境参数信息,通过与服务器对接实现数据交换。在服务器搭建的网页平台界面,能够实现大棚变化的实时监控。试验表明:该农业自动化生产监控系统可操作性强,传输数据快捷稳定,控制准确,实用价值较高。  相似文献   

6.
借助物联网技术可得到及时准确的农业气象信息。建立一个基于物联网的农业气象无线监测系统,从而实现对农业气象信息的监测;同时通过对具有统一规划的RFID节点的识别,实现农业气象数据的共享。该监测系统为农业的可持续发展提供了强有力的科学保障。  相似文献   

7.
朱斌 《南方农机》2023,(6):84-86
近年来,我国加大了对“三农”的建设力度,取得了举世瞩目的成绩,而利用物联网技术进行智慧农业建设就是农业现代化建设的重要步骤。为了进一步探究利用物联网技术进行智慧农业大棚监测系统的应用,笔者从物联网技术应用于智慧农业大棚监测系统的背景入手,分析了物联网智慧农业大棚监测系统的整体架构,介绍了智慧农业大棚监测系统的硬件结构和软件组成。结果表明,利用物联网技术能够更好地管理农业大棚,提高农作物产量。  相似文献   

8.
进入新世纪,农业在不断发展、创新,并逐步迈入信息化、智能化。然而,传统物联网蔬菜大棚,只能对空气和土壤的温、湿度做出检测。因此,笔者设计了一款基于新型化"智慧蔬菜大棚"管理系统的语音控制模块,阐述了语音控制模块的工作原理、组成和电路设计。仿真结果表明,该系统可以语音控制蔬菜大棚的运作,方便管理员控制整个蔬菜大棚系统,实现了蔬菜大棚系统管理的智能化和信息化。  相似文献   

9.
随着科学技术和物联网行业的发展,农业正在向智能耕种模式转型。本文以物联网为基础,提出基于Kittenblock智慧大棚系统设计方案,利用Kittenblock图形化编程软件编写程序,综合运用Arduino主控板和各种传感器建构一个智能化的种植大棚。整个系统可以监测大棚内温度、土壤湿度、光照强度等,同时形成防火报警系统,将相关数据显示在液晶屏上,并做出对应遮荫、灌溉、通风、降温等防护措施,实现农业种植的智能化、精细化管理,提高种植效率。  相似文献   

10.
基于物联网技术的智慧农业大棚设计与应用   总被引:3,自引:0,他引:3  
利用无线传感器网络、无线Mesh宽带网络和视频实时监控等物联网相关核心技术,对农业大棚内大气和土壤环境进行全面实时监测,实时反馈控制和告警,对大棚内农作物生长状态、大棚安全的视频监视,完成大棚农作物种植的科学化。经过对单个大棚的具体实施,表明智慧农业大棚符合实际应用的需要,使用效果良好。通过物联网技术对大棚农作物生产方式的改进,提升大棚种植的信息化水平,本系统具有较好的扩展性,具备对大范围大棚群种植管理的优势。  相似文献   

11.
农业物联网技术应用到农业管理中能够实现农业数字化和精准化,达到增产增效的目的。通过分析温室大棚监控的指标提出基于农业物联网的智能温室标准架构方案:感知控制层由无线传感器模块检测土壤水分、环境温湿度和光照度,利用数据融合的相关知识,并提出无迹卡尔曼(UKF)算法用于感知数据的处理,启动滴灌、喷灌、补光或通风等控制设备;网络传输层以AVR单片机ATMEGA328P构成的Arduino板为控制核心,采用ESP8266 WIFI模块支持数据传输和数据同步,建立了系统层间数据枢纽;终端应用层采用可视化的TLINK物联网平台,可在任何时间和地点查看环境监测数据,同时根据平台监测到的数据,手动或自动启动设备。仿真结果表明:本系统成本低,却具有较高的自动化水平,对进一步提高我国农业种植向智能化方向发展具有指导意义。  相似文献   

12.
为了降低农业生产的劳动成本,使农业朝着智能化发展,笔者设计了一种基于物联网技术的智能大棚控制系统。该系统以树莓派为控制核心,利用无线互联网与移动终端进行通信,将大棚的环境数据传输到远处的移动终端。同时,树莓派会实时分析大棚的环境数据,通过控制电扇、卷帘等器件对大棚内的环境进行调节,具有一定的实用价值。  相似文献   

13.
针对传统果蔬农业大棚环境数据感知不强、现场维护工作量大、无线覆盖区域受限、生产管理效率低、成本高的问题,提出一套基于模糊PID控制的NB-IoT果蔬农业物联网系统设计。以STM32L475VET6超低功耗芯片为主控芯片,通过NB-IoT和ZigBee双协议融合组网技术和环形缓冲队列算法组建广域无线网络,设计现场监测终端与远程云监控平台,将局域终端节点采集的环境因子信息接入云服务器进行统计与分析。系统根据采集到的数据自动调控反馈控制设备,达到低功耗模式下的广域覆盖监测并智能反馈调控果蔬大棚环境因子的目的,实现感知层、网络层到平台层和应用层一套完整的果蔬大棚物联网系统设计。将模糊PID控制算法应用于温棚环境调节的仿真测试表明,系统平均丢包率为0.088%,空气温湿度、土壤温湿度、二氧化碳浓度等环境因子参数平均相对误差保持在0.5%以内,NB-IoT休眠功耗小于9μA,能实现智能反馈控制并保证系统多节点部署、多参数检测、低功耗工作、广覆盖通信的条件,使系统具有更高的复杂环境适应性和稳定性。  相似文献   

14.
结合物联网技术与现代农业生产,设计了一种农业大棚生产环境监控系统。系统由农作物生产环境监控模块、野外气象监测站、控制系统模块及管理决策平台等部分组成。部署在农业大棚内的传感器节点,采用具有自组网特点的ZigBee网络,实时采集农作物的生产信息,协调节点通过以太网将采集到的数据传输至用户端管理平台,并存储于数据存储中心;设计了多网融合、风光互补野外气象监测装置,能够根据用户选择,通过NB-IOT、LoRaWAN、WiFi、4G、以太网,完成野外的温度、湿度、光照、粉尘、风速风向、降雨量等环境,以及气象数据的传输。与此同时,系统支持自动、手动两种控制方式,用户能够通过手机APP、PC,查看农作物生产过程的实时数据,完成农业大棚内风机、卷帘、加湿器、节水灌溉装置等现场设备的控制操作。实践表明:系统在农业科技园区部署后,农业技术人员能够根据农业生产的实时监测数据,判断农作物生长的最佳条件,实现农业大棚生产的科学分析、统筹与管理,有效提高了农业大棚的管理效率,降低了人工成本,使得农业智慧化程度有了较大的提升。  相似文献   

15.
李燕 《农机化研究》2023,(1):229-233
传统的温室大棚种植主要依靠人工监测完成环境参数的监测,监测数据不全面,且实时性不高,耗费了大量的人力物力,作业效率低,严重影响了温室大棚的产量和质量。为进一步提升温室大棚效益,引入了云计算技术,深入研究了云计算各服务层次之间的关系和云架构基本原理,完成了基于云计算的温室监控系统的优化设计。同时,将云架构体系应用在温室监控系统总体方案中,分别从接入层、云服务层、传输层及感知控制层分析温室监控系统工作原理,完成了温室监控系统的功能结构设计,并对温室监控系统进行功能测试。测试结果表明:基于云计算的温室监控系统能够实时准确获取温室大棚内的温湿度、土壤湿度、二氧化碳浓度及光照度等环境信息,且通过云计算平台可以实现对温室大棚的远程控制和监控,保证各个温室大棚之间的数据共享。云计算技术在温室大棚监控系统中的应用有效推进了农业生产智能化、自动化发展,对实现智慧农业具有重要意义。  相似文献   

16.
正1智能化栽培的意义物联网是信息社会的重要组成部分,是信息经济、信息农业发展的重要基础设施。物联网所倡导的万物互联也为蔬菜大棚的智能化栽培提供了技术手段,对推动蔬菜栽培的精细化管理有重要的作用。1.1提升栽培作物质量基于物联网的温室大棚能实现智能化调温、精细化施肥,可达到提高产量、改善品质的作用,能有效提升农户的收入。1.2降低劳动力成本生产者可及时采取防控措施,降低生产风险;同时利  相似文献   

17.
农业温室大棚的智能化管理是现代农业提高资源利用率和生产力水平的重要举措。本文基于物联网的ZigBee应用技术,依据温室环境农作物生长不同阶段对温度、湿度、光照等参数的需求,将先进的信息技术应用到传统的农业,通过对大棚内相关参数的实时监控,以及采用实时曲线、历史曲线及异常告警等措施,更加精细的实现了对温室内农作物的智能化管理。  相似文献   

18.
农业物联网在大棚控制系统中的运用实现了农作物增产、改善品质、调节生长周期和提高经济效益的目的。从物联网出发,结合农艺技术和物联网技术,提出了智慧农业系统结构总体框架,为用户实时监控农田并进行信息决策提供了技术支持,真正实现了农业管理的智能化,符合现代农业的发展。   相似文献   

19.
针对农业大棚CO2气体的远程实时监测问题,提出一种基于嵌入式系统开发技术和SMS无线通信技术的远程无线监测系统的设计方案。系统由大棚监测节点和用户手机两部分构成,监测节点基于ARM处理器设计实现、采用非色散红外吸收式二氧化碳传感器对CO2进行高精度检测并通过TC35I无线射频电路以SMS消息格式定时将检测数据发送到用户手机。测试结果表明,该系统监测精度高、传输距离远、运行稳定可靠,能够很好地满足农业大棚CO2气体的高性能自动化远程实时监测需求,具有较高的实用和推广价值。  相似文献   

20.
《农机科技推广》2013,(5):20-20
4月23日,农业部印发了《农业物联网区域试验工程建设工作方案》。《方案》提出,在天津、上海、安徽三省市率先启动农业物联网区域试验工程。安徽大田生产物联网试验区以大田作物“四情”(苗情、墒情、病虫情、灾情)监测服务为重点,通过远程视频监控与先进感知相结合的农情数据信息实时采集、高效低成本信息传输和计算机智能决策技术的集成应用,实现大田作物全生育期动态监测预警和生产调度。该试验区将建设大田作物农情监测系统、基于感知数据的大田生产智能决策系统、基于物联网的农机作业质量监控与调度指挥系统、集成于12316平台的大田生产信息综合服务平台等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号