首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于颜色因子与图像融合的茶叶嫩芽检测方法   总被引:1,自引:0,他引:1  
针对采茶机器人的茶叶嫩芽识别问题,提出一种基于颜色因子与图像融合的茶叶嫩芽图像检测算法。首先对RGB彩图进行ExG、ExG-ExR,MExG,COM2灰度化处理,并进行灰度图归一化处理;然后选择合适的通道,利用Haar和DB2小波进行多通道图像分解、滤波、融合。获得融合后的灰度图像直方图,对直方图形状进行分析,根据嫩芽老叶的面积比与像素数目比确定图像分割阈值。试验结果表明,此算法能充分利用嫩芽与老叶的颜色差异,很好地检测出茶叶嫩芽,SD,Dice,ER,NR分别为63.005%,60.09%,101.235%,6.515%,性能优于Otsu。  相似文献   

2.
3.
基于颜色和形状特征的茶叶嫩芽识别方   总被引:6,自引:1,他引:5  
与人工采摘茶叶相比,现有采茶机械虽能提高采摘速度,但采摘时老叶、嫩叶一起采,缺乏选择性,并有部分叶片遭破损,降低了原料品质.为此,需要研究具有选择性、低损伤率的自动采摘方法.本文采用基于颜色和形状特征的图像处理方法,实现茶叶嫩芽的计算机识别和检测.针对清明期陕西名茶午子仙豪茶叶,首先在RGB颜色空间中提取茶叶图像的G分量,并采用双阈值方法对图像进行分割;然后根据茶叶嫩芽的形状特征,检测茶叶嫩芽的边缘.实验结果表明:基于颜色和形状特征的识别方法能有效分辨出茶叶嫩芽,识别准确率为94%,为实现茶叶嫩芽的自动采摘提供了一种有效方法.  相似文献   

4.
针对自主采茶机器人,研究了在茶园自然光环境下如何高效识别茶叶嫩芽。针对自然光条件下采集的茶叶图像含有大量噪声的情况,为了避免一些像素值变化剧烈的像素点,根据分析,最终选用双边滤波去噪算法,对茶叶原始图像进行平滑滤波的同时,还能有效保留图形的边缘等有用信息。采用一种新的基于颜色通道调换的算法来增大茶叶嫩芽和老叶以及环境的对比度,然后提取茶叶的颜色特征,进而分割提取出茶叶嫩芽。实验结果表明:基于颜色通道变换的算法具有高效稳定等优点,能够很好地识别茶叶嫩芽,可以满足自主采茶机器人对茶叶嫩芽识别的要求。该算法为后续自主采茶机器人的研发提供了技术支持。  相似文献   

5.
基于视觉测量的茶叶嫩芽定位方法研究   总被引:1,自引:0,他引:1  
针对目前名优茶采摘效率低以及名优茶的采摘具有较强的时效性等问题,提出用双目摄像头定位茶叶嫩芽,以此推动自动化采茶设备的研发。采用双目立体视觉技术获取茶叶嫩芽的三维坐标信息,用于引导采摘机械臂进行自动化采摘作业。试验以茶园中的茶树为研究对象,根据SGBM算法获得一幅视差图像。然后通过OpenCV中reprojectImageTo3D函数得到深度图像,最后对照左摄像机中嫩芽形心在深度图像中的位置,获取茶叶嫩芽的三维坐标信息。实验结果表明,所采用的方案能够较为精确地定位出茶叶三维立体坐标,为后续自主采茶机器人的研发提供了技术支持。  相似文献   

6.
为有效识别茶叶嫩芽提高机械采摘精度、规划采摘路线以避免伤害茶树,针对传统目标检测算法在复杂背景下检测精度低、鲁棒性差、速度慢等问题,探索了基于Faster R-CNN目标检测算法在复杂背景下茶叶嫩芽检测方面的应用。首先对采集图像分别进行等分裁切、标签制作、数据增强等处理,制作VOC2007数据集;其次在计算机上搭建深度学习环境,调整参数进行网络模型训练;最后对已训练模型进行测试,评价已训练模型的性能,并同时考虑了Faster R-CNN模型对于嫩芽类型(单芽和一芽一叶/二叶)的检测精度。结果表明,当不区分茶叶嫩芽类型时,平均准确度(AP)为54%,均方根误差(RMSE)为3.32;当区分茶叶嫩芽类型时,单芽和一芽一叶/二叶的AP为22%和75%,RMSE为2.84;另外剔除单芽后,一芽一叶/二叶的AP为76%,RMSE为2.19。通过对比基于颜色特征和阈值分割的茶叶嫩芽识别算法(传统目标检测算法),表明深度学习目标检测算法在检测精度和速度上明显优于传统目标检测算法(RMSE为5.47),可以较好地识别复杂背景下的茶叶嫩芽。  相似文献   

7.
嫩芽识别是实现名优茶智能采摘的前提,因此,利用数码相机采集了清明时期贵州大学和贵州农科院茶园茶叶图像,并以茶叶图像为对象,研究了茶叶嫩芽的识别方法。首先对1KGB颜色模型的色差法(R—B)进行分析,然后以该算子为分割分量,对比研究了多种阈值分割法的优缺点和分割效果。试验结果表明,所研究的分割方法都能有效区分嫩芽和背景,其中ostu法和迭代阈值法的识别效果较好,嫩芽识别准确率为90%左右。  相似文献   

8.
相较于人工感官评审法,基于深度学习和计算机技术进行茶叶嫩芽分级可以降低时间成本并大幅提高精度,但常用的识别模型存在着冗余计算量多和模型规格大的问题。为此以采摘自贵州红枫山韵茶场的茶叶嫩芽为研究对象,根据人工经验将茶样划分为3个等级;在ShuffleNet-V2 0.5x基本单元中嵌入多尺度卷积块注意力模块(MCBAM)与多尺度深度捷径(MDS),提出一种茶叶嫩芽分级模型(ShuffleNet-V2 0.5x-SMAU),聚焦茶样中有利于分级的特征信息;以在两个不同源域上预训练后的模型作为教师和学生模型,提出一种结合双迁移和知识蒸馏的茶叶嫩芽分级方法,借助暗知识的传授进一步增强分级模型分类性能与抵抗过拟合的能力。结果表明,本文方法能在保证模型轻量性的条件下,对测试集各级样本的分级准确率达到100%、92.70%、89.89%,表现出优于采用复杂网络模型的综合性能,在储存资源有限和硬件水平低的生产场景中应用具有优越性。  相似文献   

9.
基于Compact-YOLO v4的茶叶嫩芽移动端识别方法   总被引:1,自引:0,他引:1  
茶叶嫩芽精准识别是实现嫩芽智能化采摘的前提与基础,采用视觉和深度学习的嫩芽识别方法逐渐成熟,但该方法过度依赖于高性能硬件,不利于采茶机器人移动端的部署,针对这一问题,本文提出一种基于Compact-YOLO v4算法的茶叶嫩芽移动端识别方法。首先对YOLO v4算法的Backbone网络和Neck网络进行改进,将Backbone网络替换为GhostNet,将Neck网络中传统卷积替换为Ghost卷积,改进后的模型内存占用量仅为原来的1/5。接着运用迁移学习的训练方法提升模型精度,试验表明,Compact-YOLO v4算法模型的精度、召回率、平均精度均值、F1值分别为51.07%、78.67%、72.93%和61.45%。最后将本文算法模型移植到PRO-RK3568-B移动端开发板,通过转换模型、量化处理、改进部署环境3种方式,降低模型推理计算对硬件性能的需求,最终在保证嫩芽识别准确率的前提下,实现了优化模型推理过程、减轻移动端边缘计算压力的目的,为茶叶嫩芽采摘机器人的实际应用提供了技术支撑。  相似文献   

10.
为实现茶嫩芽快速识别与采摘点定位,研究一种轻量级深度学习网络实现茶嫩芽分割与采摘点定位。采用MobileNetV2主干网络与空洞卷积相结合,较好地平衡茶嫩芽图像分割速度与精度的矛盾,实现较高分割精度的同时,满足茶嫩芽快速识别的要求,并设计外轮廓扫描与面积阈值过滤相结合的采摘点定位方法。试验表明:所提出的茶嫩芽分割算法在单芽尖及一芽一叶数据集中精度优异,平均交并比mIoU分别达到91.65%和91.36%;在保持高精度的同时,模型复杂度低,参数量仅5.81 M、计算量仅39.78 GFOLPs;在单芽尖、一芽一叶及一芽两叶数据集中各随机抽取200张图片进行采摘点定位验证,定位准确率分别达到90.38%、95.26%和96.60%。  相似文献   

11.
茶叶嫩芽自动识别分类是实现采茶机器人精采名优茶的关键技术。由于茶叶嫩芽与背景中茶叶差别很小,且茶叶嫩芽形状多样,有一芽一叶和一芽二叶等多种形式,给自动识别带来很大难度。基于Faster-RCNN深度学习神经网络模型多维度进行茶叶嫩芽识别。首先对网络性能进行分析,选取较优的网络模型;在此基础上,研究一幅图像中包含嫩芽的不同数量、形态、拍摄角度、光照条件多维度对识别性能的影响。结果发现,光照条件和拍摄角度对嫩芽识别影响较大。所采用的Faster-RCNN深度学习模型对45°角度拍摄、晴天环境下单株集中一芽两叶的茶叶嫩芽识别效果最佳,同时阴天和90°拍摄时识别效果较差。研究为后续实现机器人现代化智能化的名优茶精采提供了技术支持。  相似文献   

12.
根据桔子树干颜色的特点,提出了一种图像分割方法。首先,利用颜色特征定位ROI;然后,计算该区域的颜色特征向量提取桔子树干;最后,对不连续的桔子树干区域利用数学形态学方法进行自动修补。实验结果表明,该方法能够有效地提取出桔子树干,并确定其质心和面积,算法的平均识别率达到了86.93%。  相似文献   

13.
基于颜色特征的牧草图像分割方法研究   总被引:1,自引:0,他引:1  
针对自然光照条件下牧草图像的分割问题,分别研究了在RGB颜色空间和HSI颜色空间中牧草颜色特征的提取。在RGB颜色空间中,利用2G-B色差特征得到牧草和背景差值最大的色差灰度图像,使用最大类间方差图像分割法对色差灰度图像进行了图像分割。在HSI颜色空间中,根据牧草H分量的分布特点,使用模糊C-均值(FCM)的彩色图像分割方法对牧草的彩色图像进行了有效分割。实验表明,基于HIS彩色空间H色调的FCM方法对牧草的分割能够取得比较理想的效果,经二值化处理后得到的牧草轮廓要比基于2G-B色差特征的最大类间方差分割方法得到的牧草轮廓更加完整。  相似文献   

14.
基于分形理论的树木图像分割方法   总被引:5,自引:2,他引:5  
提出用分形维数和颜色对树木图像进行分割的方法,分割时用双毯法计算分形维数,用颜色、强度、局部分维、边界边缘等特征组合的方法进行区域生长。试验表明,基于分形理论对树木图像进行分割是一种非常有效的方法。  相似文献   

15.
图像分割是一种重要的图像分析技术,旨在把图像分成各具特性的区域并提取出感兴趣的部分.图像分割的结果是图像特征提取、识别等图像理解的基础.介绍阈值分割和边缘检测的分割方法,并进行分割算法试验,分析自然场景下植物叶片图像几种分割方法的优缺点,为该分割方法的应用提供依据.  相似文献   

16.
为了改善番茄采摘机器视觉系统中番茄果实图像的分割效果,对基于二维直方图的阈值分割方法的理论进行了分析,针对番茄果实图像的特点将阈值点附近的区域信息引入分割算法中,提出了一种改进的基于二维直方图的Otsu阈值分割方法,改善了图像的分割效果。  相似文献   

17.
基于颜色与形状特征的甘蔗病害图像分割方法   总被引:10,自引:0,他引:10  
根据甘蔗苗期赤腐病和环斑病图像的特点,提出了一种甘蔗病害图像分割方法.首先利用颜色特征2G-R-B和2R-G-B提取出病斑和土壤等非绿色植物类.然后采用面积阈值分割法排除部分土壤等非绿色植物类连通区域.最后利用链码计算剩下的病斑和土壤等非绿色植物类连通区域的形状特征,根据区域的宽度、矩形度和圆度分离出病害病斑.实验结果表明,该算法能有效提取出赤腐病和环斑病病斑,对环斑病图像分割正确率达93%,对赤腐病图像分割正确率达95%.  相似文献   

18.
在昆虫图像处理领域,往往只对图像中的目标昆虫感兴趣,但从田间收集到的图像中,难免会有杂虫、杂物以及背景的干扰。文章主要对黄色诱虫板上烟粉虱图像的目标分割方法进行研究。提取图像中烟粉虱、主要杂虫以及背景的颜色特征,深入分析,最终选择R、G、B三原色中的B分量为60作为最佳阈值,用RGB彩色图像分割的方法,有效的将烟粉虱目标与诱虫板背景、杂虫分离开来。对分割过程中产生的局部小连通区域进行了相应消除,提升烟粉虱目标分割的准确性。分割准确率可以达到97.8%。  相似文献   

19.
图像分割是花卉类别图像识别过程中的重要步骤,分割结果的优劣直接影响识别结果的准确性。针对自然场景下的银桂花朵图像,提出一种基于马尔科夫随机场(Markov Random Field, MRF)的阈值分割融合图像分割算法。首先提取RGB彩色图像中的R通道、G通道、B通道的灰度图,用Otsu、Kittler、Niblack、Kapur四种阈值分割算法对灰度图进行二值化,然后利用像素局域空间能量与图像间能量建立MRF总能量泛函,最后对能量泛函进行最小化迭代求解,得到融合后的分割图。试验结果表明,提出的算法能降低树干背景影响,分割效果好,能很好地提取银桂花朵,SD、Dice、ER、NR平均值分别为93.07%、96.35%、7.73%、1.30%。  相似文献   

20.
混药器流体图像采集与分割方法   总被引:4,自引:2,他引:2  
通过在农药中加入示踪粒子,利用高速摄像机采集喷雾机农药与清水通过混药器在线混合后流体混合图像的方法,研究了喷雾机农药与水在线混合的混合效果.对于原始粒子图像均匀度较差的问题,提出了基于形态学的校正方法,利用灰度增强的Otsu法对粒子图像进行了有效分割,提取了粒子质心坐标等参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号