首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process.

Materials and methods

This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1).

Results and discussion

The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal.

Conclusions

The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.  相似文献   

2.

Purpose

Excessive exchangeable sodium and high pH significantly decrease soil structural stability and permeability. Long-term application of cattle manure is an important management practice that can affect water-stable aggregates (WSAs), as well as aggregate stability and distribution of soil organic carbon (SOC) and total nitrogen (TN) in solonetzic soils.

Material and methods

Experiments were carried out in a randomized complete block design comprising five treatments according to the cattle manure application history: corn (Zea mays) with manure applied for 1, 5, 12, and 17 years were used as the experimental treatments and corn without manure application was used as a control. Soil properties, including WSAs, mean weight diameter (MWD), and SOC and TN concentrations in bulk soils and WSAs, were measured across all treatments. The relationships among the measured soil attributes were determined using stepwise regression analysis.

Results and discussion

Results indicated that micro-aggregates mainly accumulated in soils without manure application, while manure application significantly increased macro-aggregates formation. MWD was highest when manure was applied to the soil for 1 year, decreased after 5 years, and increased again after 12 years. SOC and TN concentrations in bulk soils and WSAs increased with the number of years of manure application, with the highest concentrations observed for 17 years in bulk soils. Stepwise regression analysis showed that WSAs 2–5 mm, SOC in WSAs 0.25–0.5 mm, and TN in WSAs 0.1–0.25 mm were dominant independent variables affecting aggregate stability, and that SOC in WSAs 0.25–0.5 mm and TN in WSAs <0.1 mm were dominant independent variables affecting SOC and TN concentrations in bulk soils, respectively.

Conclusions

Long-term application of manure to a solonetz significantly increased macro-aggregates and aggregate stability as well as SOC and TN in bulk soils and all aggregate sizes. These results are likely related to binding agent production as well as C and N accumulation from manure application.  相似文献   

3.

Purpose

We determined the relationship of a planktonic algal bloom with spatial and temporal changes in sediment bacterial communities in a eutrophic urban river in the Taihu Basin, China.

Materials and methods

Surface sediments from different locations on the river, including with and without an algal bloom, were collected monthly for 1 year. Sediment bacterial communities were assessed by sequencing 16S rRNA gene amplicons using an Illumina MiSeq.

Results and discussion

There were distinct spatial and temporal changes in sediment bacterial community structure. Significant decrease in the Shannon diversity corresponded with the peak chlorophyll a (Chl a) concentration. Proteobacteria, Chloroflexi, and Bacteroidetes were the dominant phyla throughout the year; however, their relative abundances changed seasonally. At the time of peak Chl a concentrations, Proteobacteria and Bacteroidetes comprised a greater proportion of the bacterial community. Bacterial community structure also varied spatially at the operational taxonomic unit (OTU) level according to canonical correspondence analysis (CCA), especially in locations with an algal bloom compared with those without an algal bloom. There were positive correlations between multiple bacterial genera and Chl a content, suggesting the potential for facilitative relationships between phytoplankton and bacteria. Based on the CCA, water temperature, NH4 +-N, TN, NO3 ?-N, and TP in the sediment and Chl a contents in the water column were significantly correlated with sediment bacterial community structure (P < 0.05).

Conclusions

Planktonic algal blooms may influence sediment bacterial community structure at all taxonomic levels in urban rivers. This work emphasizes the need for more comprehensive studies regarding the impact of planktonic algal blooms on sediment bacterial communities.
  相似文献   

4.

Purpose

Activated carbons (ACs) were applied to evaluate the effects of surface oxidation on bioavailability and bioaccumulation of cadmium (Cd) and copper (Cu) in freshwater sediment along with Eisenia fetida biomass change.

Materials and methods

A modified sequential extraction procedure was conducted to measure the changes in bioavailable fractions of heavy metals 6 weeks after the addition of nitric acid-oxidized AC. Bioaccumulation of heavy metals in E. fetida was analyzed after 2 weeks of exposure to AC-amended contaminated sediments. Changes in biomass of earthworms caused by AC amendments were observed over 2 weeks of exposure to clean sand.

Results and discussion

Surface oxidation of AC caused little impact on AC surface properties except for oxygen contents leading to enhanced sorption capacity for heavy metals. Bioavailable fractions of the heavy metals increased after 6 weeks, and less was bioavailable with various ACs than without AC. The earthworms were exposed to the sediments mixed with ACs for 6 weeks. After 2 weeks of exposure, bioaccumulation of Cd and Cu decreased drastically. More than 76 % of Cd and 80 % of Cu reductions were observed with each type and dose of AC. Weight loss of E. fetida incubated in clean sand for 13 days after AC amendments was observed, but was not affected by surface oxidation.

Conclusions

Inhibited growth of E. fetida due to AC could be responsible for the reduced bioaccumulation of Cd and Cu in the earthworms as AC inhibited the movement of earthworms, leading to less bioturbation and decreased consumption of nutrients.  相似文献   

5.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

6.

Purpose

Sediment contamination in US waterways is an expensive and complicated issue, and as acceptance of nontraditional sediment remediation strategies broadens, novel and efficient methods to assess and monitor the bioavailability of hydrophobic organic contaminants (HOCs) in contaminated sediments will play an important role.

Materials and methods

In this project, solid phase microextraction (SPME) fibers inside perforated steel tubes were used as in situ passive samplers to measure polycyclic aromatic hydrocarbon (PAH) concentrations in sediment before and after treatment with activated carbon (AC). Two modes of waterjet amendment injection were used to apply the AC. In the first treatment, a single 2-min injection was shot into the center of a test vessel, and in the second treatment, multiple 7-s injections in a grid were placed in sediment.

Results and discussion

In the single injection, no treatment was observed 5 cm away from the injection, while at 2.5 cm, >90 % decrease of PAH pore water concentration was observed, indicating a similar bioavailability decrease. In the multiple injection experiment, >90 % PAH pore water level reductions were observed throughout the test vessel. Highly contaminated and less contaminated sediments were mixed with 0–5 % AC by weight to develop AC treatment curves. Over 99 % reduction in PAH pore water concentrations and bioavailability was observed in the less contaminated sediment at 3 % AC, while 99 % reduction was never reached even at 5 % AC addition in the highly contaminated sediment. Different treatment curves were observed for the different contaminated sediments. In situ equilibration times were 120, 215, and 250 h for phenanthrene, pyrene, and benzo(a)anthracene, respectively.

Conclusions

The results show that in situ SPME is a viable method to observe AC treatment and evaluate reductions in pore water concentrations and bioavailability.  相似文献   

7.

Purpose

Wet meadows formed on alluvial deposits potentially store large amounts of soil carbon (C) but its stability is subject to the impacts of management practices. The objective of this study was to quantify and characterize soil organic carbon (SOC) and nitrogen (N) in mountain wet meadows across ranges of meadow hydrology and livestock utilization.

Materials and methods

Eighteen wetlands in the southern Sierra Nevada Mountains representing a range of wetness and livestock utilization levels were selected for soil sampling. In each wetland meadow, whole-solum soil cores delineated by horizon were analyzed for total and dissolved organic C (DOC) total (TN) and mineral nitrogen and soil water content (SWC). Multiple regression and GIS analysis was used to estimate the role of wet meadows in C storage across the study area landscape.

Results and discussion

Average solum SOC contents by wetland ranged from 130 to 805 Mg ha?1. All SOC and TN components were highly correlated with SWC. Regression analyses indicated subtle impacts of forage utilization level on SOC and TN concentrations, but not on whole-solum, mass-per-area stocks of SOC and TN. Proportions of DOC and TN under seasonally wet meadows increased with increasing utilization. GIS analysis indicated that the montane landscape contains about 54.3 Mg SOC ha?1, with wet meadows covering about 1.7% of the area and containing about 12.3% of the SOC.

Conclusions

Results indicate that soil organic C and N content of meadows we sampled are resilient to current light to moderate levels of grazing. In seasonally wet meadows, higher proportions of DOC and N with increasing utilization indicate vulnerability to loss. Partial drying of the wettest and seasonally wet meadows could result in losses of over five % of landscape SOC.  相似文献   

8.

Purpose

Many environmental investigations (empirical and modelling) and theories are based on reliable information on the depth distribution of physical, chemical and biological properties in soils and sediments. However, such depth profiles are not easy to determine using current approaches, and, consequently, new devices are needed that are able to sample soils and sediments at fine resolutions.

Materials and methods

We have designed an economic, portable, hand-operated surface soil/sediment sampler—the Fine Increment Soil Collector (FISC)—which allows for the close control of incremental soil/sediment sampling and for easy recovery of the material collected by a simple screw-thread extraction system. This innovative sampling system was developed originally for the beryllium-7 (7Be) approach in soil and sediment redistribution research. To ensure reliable estimates of soil erosion and sediment deposition from 7Be measurements, the depth distribution of this short-lived fallout radionuclide in soil/sediment at the resolution of millimetres is a crucial requirement. This major challenge of the 7Be approach can be met by using the FISC.

Results and discussion

We demonstrate the usefulness of the FISC by characterising the depth distribution of 7Be at increments of 2.5 mm for a soil reference site in Austria. The activity concentration of 7Be at the uppermost increment (0–2.5 mm) was ca. 14 Bq kg?1 and displayed decreasing activity with depth. Using most conventional sampling devices (i.e. the scraper-plate system), the most accurate depth increment would have been 10 mm, and the activity concentration at the surface would have been considerably lower. Consequently, coarser sampling would have influenced estimates of 7Be-derived soil erosion and deposition. The potential application for other soil/sediment properties, such as nutrients (e.g. phosphorus), contaminants and carbon are also discussed.

Conclusions

By enabling soil and sediment profiles to be sampled at a depth resolution of millimetres, the FISC has the potential to provide key information when addressing several environmental and geoscientific issues, such as the precise depth distributions of soil/sediment nutrients, contaminants and biological properties.  相似文献   

9.

Purpose

The feasibility of applying the method of single-scan fluorescence emission spectra of humic substances (HSs) without chemical pretreatments of sediment pore-water samples was tested to ascertain the past productivity and sources of organic matter of lakes.

Materials and methods

Sediment samples were collected from ten Estonian lakes (located between 57°36′ and 59°25′N and 22°12′ and 26°59′E) covering all levels of the trophic scale. The height (fluorescence intensity), location (fluorescence maximum) and shape (fluorescence index, the ratio of intensities at the emission wavelengths 450 and 500 nm) of the fluorescence emission spectrum at an excitation of 340 nm were under consideration.

Results and discussion

Pore-water humic substances (pwHSs) from sediments of eutrophic lakes had generally a high fluorescence intensity and fluorescence index and their fluorescence maximum was located at shorter wavelengths. Characteristic features of pwHSs from oligotrophic lakes were low fluorescence intensity, emission of maximum fluorescence at shorter wavelengths and high fluorescence index values. Pore-water humic substances from sediments of dystrophic lakes were characterized by a low fluorescence intensity and fluorescence index and their spectral peak was shifted to longer wavelengths. The study also demonstrated that a shift in the peak location of pwHSs fluorescence was accompanied with a change in the C/N ratios of sedimentary organic matter, and the alteration in the fluorescence index of pwHSs was synchronous with the changes in their molecular weight.

Conclusions

The obtained results suggest that fluorescence spectroscopy of pwHSs without using chemical pretreatments has a great potential in the reconstruction of past lake conditions.  相似文献   

10.

Purpose

Sediment fingerprinting is a relatively recent research technique, capable of determining the origin of suspended sediment. In this study, we investigated sub-basins within a larger watershed we examined previously. The objectives were to determine if there was spatial variation in the origin of the suspended sediments and to test a streamlined fingerprinting approach which would reduce the cost, thereby paving the way for adoption by government agencies.

Materials and methods

Samples were collected from three tributaries, the outlet of the main stem, and at the middle of the main stem. Two methods to collect suspended sediment samples were compared: a mobile continuous-flow centrifuge and automated samplers. A relatively small initial tracer suite consisting of stable isotopes of nitrogen (N) and carbon (C) (15N and 13C), total N (TN), and total C (TC) was tested. Tracer concentrations were obtained through a single mass spectrometry analysis requiring <1 g of sediment.

Results and discussion

Multivariate discriminant analysis showed that three of the four tracers (δ 15N, δ 13C, and TC) from the initial pool were capable of accurate classification of the source samples. A multivariate mixing model showed that banks contributed the majority of sediment throughout all locations sampled and that in tributaries it was an even more dominant source. Despite variations in land use and stream order, the legacy sediments comprising the banks and floodplains were the main factor in impairment for suspended sediment. We found a small but statistically significant difference in δ 15N and δ 13C concentrations collected using automated samplers vs. the mobile centrifuge, but the effect on analysis of sediment source proportions was minimal.

Conclusions

The results of this study indicate that, at least in the study watershed, the majority of sediment in suspension was of streambank origin. A cost-effective tracer suite was identified as well as an attempt to make a streamlined approach to the technique. The streamlined approach cost much less ($7,550 US) than the conventional approach ($46,600 US) and should be suitable for total maximum daily loads analysis by state government agencies in the Southern Piedmont region of the USA.  相似文献   

11.

Purpose

Few studies have described the bacterial community structures of turbid rivers. In this paper, the characteristics of the bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world, were studied.

Materials and methods

Water and sediment samples were collected from six sites along the river. Bacterial community composition was determined using the 16S ribosomal RNA (rRNA) gene clone library technique. The relationship between environmental parameters and bacterial diversity was analyzed.

Results and discussion

A total of 1,131 gene sequences were obtained and clustered into 639 operational taxonomic units (at the 97 % identity level), with Proteobacteria as the predominant phylum. The Shannon index for water samples ranged from 3.39 to 4.40 and was generally higher than that in other rivers; this was probably due to the high suspended particulate sediment (SPS) concentration in the Yellow River, which can provide more habitats for both aerobic and anaerobic bacteria. Also, the bacterial diversity of the water samples was slightly higher than that of the surface sediment samples. The bacterial diversity of water increased along the river in the downstream direction, while there was no trend for the sediment. Redundancy analysis indicated that pH, dissolved organic carbon (DOC), and SPS were the main factors controlling the water bacterial community in the Yellow River, and pH, nitrate–nitrogen, and water content were the main factors for the surface sediment bacterial community.

Conclusions

This study indicated that the bacterial diversity of the Yellow River is generally higher than that in other rivers, suggesting that SPS plays an important role in regulating bacterial diversity and community structure in aquatic environments.  相似文献   

12.

Purpose

The content and composition of dissolved organic matter (DOM) in sediment directly affect nutrient cycling and material exchange in lake ecosystems. This study investigated the content and composition of DOM and its fractions in sediments, as well as the relationship between the different parameters and nitrogen (N) forms in DOM. The main aim of this study was to evaluate the compositional characteristics of DOM, hydrophobic bases (HOB), hydrophobic acids (HOA), hydrophobic neutral fractions (HON), and hydrophilic matter (HIM) in sediments from Erhai Lake, China.

Materials and methods

Seven surface sediment samples with different environmental characteristics were collected. The DOM in the sediment was fractionated into HOB, HOA, HON, and HIM using XAD-8 resin based on compound hydrophobicity. The contents of DOM and its fractions were measured using a TOC analyzer. The structural characteristics of DOM and its fractions were investigated using fluorescence spectroscopy and UV–Vis absorbance. Correlation analyses were carried out to better understand the relationships between the parameters of the spectral characteristics and the contents of the different N forms in DOM and its fractions.

Results and discussion

The content, spatial distribution and structure of DOM and its fractions in Erhai Lake sediment were affected by water depth and aquatic plants. The DOM content in sediment ranged from 0.2 to 0.5 g kg?1. HON accounted for 41.3 to 85.7 % of DOM, whereas HIM constituted 15.0 to 58.7 % and was significantly negatively correlated with HON (R 2 ?=?0.856, P?Conclusions (1) Hydrophobic fractions are the major components of DOM in the sediments from the seven sites in Erhai Lake. (2) DOM and its fractions mainly originated from microbial sources. (3) The A 253/A 203 ratio is useful for evaluating the contents of N forms. The structure of DOM and its fractions are important in affecting the contents of DON. Nitrate (NO3-N) contributes to eutrophication, and thus cannot be ignored from studies of Erhai Lake sediment.  相似文献   

13.

Purpose

In summer 2007, biweekly benthic fluxes of the biogenic elements carbon (C), nitrogen (N), silicon (Si), and phosphorus (P) were studied in the Se?ovlje saltern (salt-making facility) in the northern Adriatic Sea, Slovenia in order to determine the impact of stromatolite (??petola??) on the geochemical properties of saltern sediments.

Materials and methods

The brine and pore waters were analyzed for salinity, NH 4 + , NO 3 ? , PO 4 3? , SiO 4 4? , total dissolved nitrogen, total dissolved phosphorus, and fluorescent dissolved organic matter. The sediment was analyzed for organic carbon (OC), total nitrogen (TN), total and organic phosphorus (OP), and biogenic Si concentrations, as well as values of ?? 13COC and ?? 15NTN.

Results and discussion

Nutrient concentrations in brine water increased along the salinity gradient due to different processes, such as the evaporative concentrations of seawater, bacterial activity, more pronounced transformation and degradation of organic matter, and regeneration of nutrients. The petola from the Se?ovlje saltern, which is predominately composed of cyanobacterial and diatom communities, develops during the early evaporation stage and survives during high salinity and halite crystallization. Nitrogen fixation and P removal were the principal biogeochemical processes controlling dissolved inorganic N and P concentrations. At higher salinities, N limitation was more important. Microbes decomposed at higher salinities, and the remineralized N and P nutrients were released from surface pore waters to the brine. OP remineralization was also an important process influencing the distribution of PO 4 3? concentrations in pore waters deeper in the sediments. The increasing SiO 4 4? concentrations with increasing salinity in the brine waters were due to dissolution of diatom frustules, while the decrease in pore water SiO 4 4? was probably the consequence of microbial uptake.

Conclusions

This study provides a better understanding of nutrient cycling and the geochemical processes in the Se?ovlje saltern.  相似文献   

14.

Purpose

Marine mangrove sediments in the Manche-à-Eau lagoon (Guadeloupe, Caribbean Sea) harbor locally extensive, white microbial mats. These mats cover the surface of reduced sediments near the roots of red mangrove trees, Rhizophora mangle, and are mainly composed of sulfur-oxidizing bacteria belonging to the Beggiatoaceae family, with some filamentous cyanobacteria. The goal of this study was to investigate the possible influence of sediment characteristics on the presence of these microbial mats.

Materials and methods

Four push cores were collected in April 2013, two from zones with microbial mats and two from zones without mats. Sediment characteristics (grain-size distribution, mineralogy, total organic carbon (TOC) and total nitrogen (TN) contents, atomic TOC/TN ratios, and organic matter (OM) δ13C values) were compared for all four cores.

Results and discussion

Significant differences were observed between sediments below microbial mats and those without mats. Sediments with microbial mats contained greater amounts of clay, and higher TOC, TN, and TOC/TN ratios, with lower total carbonate content and δ13C values. The higher clay content most likely results from lower fluid flow velocity near to mangrove roots, while higher TOC/TN ratios and lower δ13C values indicate higher inputs of OM from mangrove trees. These results are consistent with the fact that microbial mats were observed near the roots of mangrove trees, which trap OM from terrestrial vegetation and fine sediments.

Conclusions

The grain-size distribution of sediment particles, the total carbonate content, and the δ13C values are the main parameters discriminating between zones with microbial mats and those without mats. Variations in total carbonate content, which is mainly of biogenic origin, result from conditions that are more favorable for benthic organisms in zones without microbial mats. Variations of the TOC/TN ratios are controlled by the presence of a non-negligible amount of inorganic nitrogen bound to surface clay mineral particles and/or by microbial processes.
  相似文献   

15.

Purpose

The aim of this study was to evaluate the behaviour of P in saline Spolic Technosols flooded with eutrophic water, with and without plant rhizosphere, in order to assess the role of these soils as sinks or sources of this nutrient.

Materials and methods

Samples were taken from basic (pH?~7.8), carbonated and acidic (pH?~6.2), de-carbonated soils of salt marshes polluted by mine wastes. Three treatments were assayed: pots with Sarcocornia fruticosa, pots with Phragmites australis and pots without plants (bare soil). The pots were flooded for 15?weeks with eutrophic water (PO 4 3? ~6.92?mg?L?1) and pH, Eh and water-soluble organic carbon and PO 4 3? concentrations were monitored in the soil solution. A soil P fractionation was applied before and after the flooding period.

Results and discussion

The PO 4 3? concentration in the soil solution decreased rapidly in both soils, with and without plant, being diminished by 80?C90?% after 3?h of flooding. The Fe/Mn/Al oxides and the Ca/Mg compounds played an important role in soil P retention. In pots with S. fruticosa, the reductive conditions due to flooding induced P release from metal oxides and P retention to Ca/Mg compounds. In turn, P. australis may have favoured the release of P from carbonates, which was transferred to Fe/Mn/Al compounds.

Conclusions

The retention of P by the soil was the main mechanism involved in the removal of PO 4 3? from the eutrophic flooding water but to evaluate the capacity of these systems as long-term P sinks, the combined effect of metals, Ca/Mg compounds and specific plant species should be considered.  相似文献   

16.

Purpose

Visible and near-infrared (Vis-NIR) reflectance measurements may be an alternative technique to identify suspended sediment sources in streams of headwater catchments. In this study, we examined if Vis-NIR reflectance measurements are capable of estimating sediment source contributions to sediment yield and compared this technique with a more conventional (i.e. geochemical) technique.

Materials and methods

Two headwater catchments in Ethiopia, Unta (2,052 ha) and Desera (1,657 ha), were analysed with the same techniques in order to find similarities and differences in the results obtained. The first technique used Vis-NIR spectral analysis as a fingerprint, using a partial least squares regression model. The second technique was a quantitative composite fingerprinting technique using geochemical analysis of source materials and suspended sediment samples. As a comparison, the partial least squares model was also used on the geochemical data. In August and September 2009, 30 soil samples of three different land uses (landslides, croplands, and grazing lands) and 21 suspended sediment samples at the catchment outlet were collected. Source samples were sieved to <63 μm. Geochemical analyses consisted of total element concentrations, percentage carbon, percentage nitrogen, and atom percentage 15N and δ13C. Reflectance measurements were taken on dried source samples with a spectrometer.

Results and discussion

Neither technique was able to predict the contributions of the three land use types; they could only distinguish between landslide and topsoil material. The agreement between the results of both techniques was significant for the Unta catchment (R 2?=?0.80) but not for the Desera catchment (R 2?=?0.39). The uncertainty of the technique using Vis-NIR reflectance measurements was slightly higher than with the geochemical approach. Both techniques revealed that topsoil erosion played an important role during storm runoff discharges. Using the partial least squares model for the geochemical data revealed that uncertainty can differ greatly when using other statistical techniques.

Conclusions

The quantitative composite fingerprinting technique using spectral signatures from both source and suspended sediment samples was able to quantify the contribution of two source materials (landslides and topsoil). It provided a faster and more cost effective alternative to the conventional geochemical procedure.  相似文献   

17.

Purpose

The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment.

Materials and methods

The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario.

Results and discussion

Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha?1 year?1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha?1 year?1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions.

Conclusions

This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.  相似文献   

18.

Purpose

Coal-fuelled power plants can discharge hazardous materials, particularly heavy metals such as lead (Pb). An alternative way of reducing Pb concentration from contaminated sediments is through phytoremediation. Presently, there are few research findings on the phytoremediation potential of mangroves on metals like Pb. The study was conducted to survey and identify mangroves that thrive near the coal-fired power plant and to assess the phytoremediation potential of mangroves on Pb in sediment.

Materials and methods

The study sites were located in the mangrove ecosystems of Sitio Oyon and Sitio Asinan in Masinloc, Zambales, Philippines. The first stage of our study was to survey and identify the mangrove species. The second stage was to assess the levels of Pb in the sediments, water, and tissues of mangrove trees. The diversity assessment of the mangrove species was done through the use of 10?×?12 m quadrat technique. Water and sediment samples from each mangrove ecosystem were collected using composite sampling methods.

Results and discussion

Three mangrove species were identified in the study sites: Avicennia marina, Rhizophora stylosa, and Sonneratia alba. The order of importance of the mangrove trees in the two sampling locations, based on an importance value index (IVI), were as follows: SA (IVI?=?171.20)?>?AM (77.79)?>?RS (51.01). The total uptake of Pb from sediments near the power plants varied significantly (p?≤?0.001) among the three mangrove species. S. alba had the highest Pb uptake of 48.4 kg ha?1 followed by A. marina (23.1 kg ha?1), and R. stylosa (2.4 kg ha?1). These three mangrove species have the potential to phytoremediate Pb in the sediment.

Conclusions

The three mangrove species present in the coastal ecosystem near the electric power plant—A. marina, R. stylosa, and S. alba—were potential phytoremediators of sediment Pb. The present study indicated that the mangroves possess beneficial characteristics that remove Pb from contaminated sediments in areas directly affected by coal-fired power plants, and thus have potential phytoremediation properties.  相似文献   

19.

Purpose

Approximately 74 % of agricultural soils in Tunisia are affected by water erosion, leading to the siltation of numerous human-made reservoirs and therefore a loss of water storage capacity. The objective of this study was to propose a methodology for estimating the relative contributions of gully/channel bank erosion and surface topsoil erosion to the sediment accumulated in small reservoirs.

Materials and methods

We tested an approach based on the sediment fingerprinting technique for sediments collected from a reservoir (which has been in operation since 1994) at the outlet of a catchment (Kamech, 2.63 km2). Sampling concentrated on the soil surface (in both cropland and grassland), gullies and channel banks. A total of 17 sediment cores were collected along a longitudinal transect of the Kamech reservoir to investigate the origin of the sediment throughout the reservoir. Radionuclides (particularly caesium-137, 137Cs) and nutrients (total phosphorus, total nitrogen and total organic carbon (TOC)) were analysed as potential tracers.

Results and discussion

The applications of a mixing model with 137Cs alone or 137Cs and TOC provided very similar results: The dominant source of sediment was surface erosion, which was responsible for 80 % of the total erosion within the Kamech catchment. Additionally, we showed that the analysis of a single composite core provided information on the sediment origin that was consistent with the analysis of all sediment layers in the core. We demonstrated the importance of the core sampling location within the reservoir for obtaining reliable information regarding sediment sources and the dominant erosion processes.

Conclusions

The dominance of surface erosion processes indicates that conservation farming practices are required to mitigate erosion in the agricultural Kamech catchment. Based on the results from 17 sediment cores, guidelines regarding the number and location of sampling cores to be collected for sediment fingerprinting are proposed. We showed that the collection of two cores limited the sediment source apportionment uncertainty due to the core sampling scheme to <10 %.  相似文献   

20.

Purpose

Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (100–104 km2).

Materials and methods

Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed.

Results and discussion

Rainfall erosivity in the study area was moderate (4600 MJ mm ha?1 h?1 year?1), whereas runoff depths (16–60 mm year?1), and therefore the sediment transport capacity, were low. Consequently, ~60 % of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km2 per reservoir) also limits sediment propagation, retaining up to 47 % of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 % of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km2 basin, the SDR was reduced to 1 % downstream of a large reservoir (1940-hm3 capacity).

Conclusions

Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号