首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The effects of plant roots on net N mineralization were examined by comparing soil microcosms with and without plants. Additionally, inorganic N amendments were used to test for competition for N between plants and microorganisms. Daily watering and the application of suction to microcosms eliminated the effects of transpiration on soil moisture content. Monthly litter collections reduced the influence of the aboveground portions of plants. Plants decreased net N mineralization by 23% during days 0–114 and then increased net mineralization by the same amount during days 144–124. Root-free soil collected from with-plant microcosms on day 244 evolved 24% more CO2 in laboratory incubations than soil from without-plant microcosms. This indicates that plants had increased substrate availability to soil microorganisms. Inorganic N amendments had no significant effects on the microcosms or on laboratory soil incubations. Evidence is most consistent with the hypothesis that plant roots increased microbial activity due to the increased substrate availability. Different net N mineralization rates probably resulted from changes in the substrate C : N ratio.  相似文献   

2.
The effect of high nitrogen (N) depositions on forest ecosystems is an important concern in North America and may lead to N saturation of forest ecosystems and contribute to soils and surface water acidification. In this study, nitrogen dynamics in the FH layers of a sugar maple (SM), a balsam fir (BF) and a black spruce (BS) forest was characterized using a short term 15N isotopic pool dilutions approach and mid-term FH material incubation both in situ and in the laboratory. The short term dilutions approach indicated that the mean residence times of and in the FH material of the three sites were low (<1 d). The amount of inorganic nitrogen () recycled annually within the exchangeable forest floor reservoir was between one and two orders of magnitude larger than the annual atmospheric N deposition found at each of the sites. The BS site was clearly distinct than the two other forest types in that net N mineralization was negligible, even in absence of root uptake, suggesting that soil microorganisms were severely N limited. While net nitrification was not observed within the FH material of the BF site, did accumulate in the FH of the SM despite a low pH of 3.72 presumably because of heterotrophic nitrification or as a result of acid-tolerant autotrophic nitrification. The difference in N dynamics between the sites were most probably caused by dominant tree species. Transformation rates of inorganic N were higher in SM, followed by BF and BS stands. Given that the potential to mineralize inorganic N matches with a superimposed N atmospheric deposition gradient in Québec, the sugar maple forest is more likely to be affected by N saturation than coniferous forests.  相似文献   

3.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

4.
5.
畜禽有机肥氮、磷在红壤中的矿化特征研究   总被引:11,自引:1,他引:10  
选用腐熟的猪粪、鸡粪和第四纪红土发育的典型红壤为试验材料,通过室内培养试验,研究了土壤中矿质氮(NO-3-N和NH4+-N)及Olsen-p的动态变化.结果表明,有机肥中氮和磷的矿化具有不同特征.氮在红壤中的矿化阶段为:前4周缓慢释放,矿化速率为N 0.29~0.46mg/(kg·d);4~10周快速释放,矿化速率为N...  相似文献   

6.
Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter.Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.  相似文献   

7.
温度和土壤类型对氮素矿化的影响   总被引:11,自引:3,他引:8  
采用短期(15 d)室内好气培养方法,研究我因东部三类主要旱地土壤(黑土、潮土和红壤)有机氮矿化对温度(15~30°C)的响应及其影响因素.结果表明,土壤累积净矿化氮量的顺序为黑土>潮土>红壤,其中高有机质土壤大于低有机质土壤.黑土累积净矿化氮量随温度升高而增加,但潮土和红壤在25℃以上表现出持平和下降趋势.土壤矿质氮...  相似文献   

8.
We evaluated the in situ net nitrogen (N) mineralization in a soil cropped to maize and fertilized for 11 years with cattle slurry or farmyard manure, both common on livestock farms of the Po River valley in Northern Italy. The net N mineralization of the tilled soil layer was measured in six consecutive incubation periods after manure application, for a total of 12 weeks, using the polyethylene buried bags technique. Results showed that net N mineralization was followed by N immobilization and finally, by mineralization whose rate increase until maize flowering. On average, net N mineralization was 70.4 kg N ha−1, with the majority being released during the last measurement period. The time and extent of net N mineralization and plant N uptakes were not affected by fresh manure application. Instead, the effect of past management increased the maximum net N mineralization rate obtained with farmyard manure. The buried bag technique probably underestimates the total amount of mineralized N available for crop growth because it excludes the presence of the plant.  相似文献   

9.
10.
Understanding the spatial variability of soil carbon(C) storage and its relationship with climate and soil texture is critical for developing regional C models and for predicting the potential impact of climate change on soil C storage. On the basis of soil data from a transect across the Inner Mongolian grasslands, we determined the quantitative relationships of C and nitrogen(N) in bulk soil and particle-size fractions(sand, silt, and clay) with climate and soil texture to evaluate the major factors controlling soil C and N storage and to predict the effect of climate changes on soil C and N storage. The contents of C and N in the bulk soil and the different fractions in the 0–20 and 20–40 cm soil layers were positively correlated with the mean annual precipitation(MAP) and negatively correlated with the mean annual temperature(MAT). The responses of C storage in the soil and particle-size fractions to MAP and MAT were more sensitive in the 0–20 cm than in the 20–40 cm soil layer. Although MAP and MAT were both important factors influencing soil C storage, the models that include only MAP could well explain the variation in soil C storage in the Inner Mongolian grasslands. Because of the high correlation between MAP and MAT in the region, the models including MAT did not significantly enhance the model precision. Moreover, the contribution of the fine fraction(silt and clay) to the variation in soil C storage was rather small because of the very low fine fraction content in the Inner Mongolian grasslands.  相似文献   

11.
 Generally, grasslands are considered as sinks for atmospheric CH4, and N input as a factor which reduces CH4 uptake by soils. We aimed to assess the short- and long-term effects of a wide range of N inputs, and of grazing versus mowing, on net CH4 emissions of grasslands in the Netherlands. These grasslands are mostly intensively managed with a total N input via fertilisation and atmospheric deposition in the range of 300–500 kg N ha–1 year–1. Net CH4 emissions were measured with vented, closed flux chambers at four contrasting sites, which were chosen to represent a range of N inputs. There were no significant effects of grazing versus mowing, stocking density, and withholding N fertilisation for 3–9 years, on net CH4 emissions. When the ground-water level was close to the soil surface, the injection of cattle slurry resulted in a significant net CH4 production. The highest atmospheric CH4 uptake was found at the site with the lowest N input and the lowest ground-water level, with an annual CH4 uptake of 1.1 kg CH4 ha–1 year–1. This is assumed to be the upper limit of CH4 uptake by grasslands in the Netherlands. We conclude that grasslands in the Netherlands are a net sink of CH4, with an estimated CH4 uptake of 0.5 Gg CH4 year–1. At the current rates of total N input, the overall effect of N fertilisation on net CH4 emissions from grasslands is thought to be small or negligible. Received: 27 January 1998  相似文献   

12.
A comparative study was conducted to determine the NH4^+ and NO3^- concentrations in soil profiles and to examine the net nitrogen (N) mineralization and nitrification in adjacent forest, grassland, and cropland soils on the Tibetan Plateau. Cropland soil showed significantly higher inorganic N concentrations in soil profiles compared with forest and grassland soils. NO3^- -N accounted for 70%-90^ of inorganic N in cropland soil, while NH4^+ -N was the main form of inorganic N in forest and grassland soils. The average net N mineralization rate at 0 20 cm depth was approximately twice in cropland soil (1.48 mg kg^-1 d^-1) as high as in forest (0.83 mg kg^-1 d^-1) or grassland soil (0.72 mg kg^-1 d^-1). Cropland showed strong net nitrification, with the net rate almost equal to the total net N mineralization. Urea addition stimulated soil respiration, particularly in forest soil. Most urea-N, however, remained as NH4^+ in forest and grassland soils, while NO3^- was the main form of inorganic N to increase in cropland soil. Higher rates of net nitrification in cropland soils suggest that land use change on the Tibetan Plateau may lead to high N losses through nitrate leaching.  相似文献   

13.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

14.
Soil labile organic carbon (C) oxidation drives the flux of carbon dioxide (CO2) between soils and the atmosphere. However, the impact of grazing management and the contribution soil aggregate size classes (ASCs) to labile organic C from grassland soils is unclear. We evaluated the effects of grazing intensity and soil ASC on the soil labile organic C, including CO2 production, microbial biomass C, and dissolved organic C and nitrogen (N) mineralization in topsoils (0–10 cm) in Inner Mongolia, Northern China. Soil samples were separated into ASCs of 0–630 μm [fine ASC (fASC)], 630–2000 μm [medium ASC (mASC)] and >2000 μm [coarse ASC (cASC)]. The results showed that heavy grazing (HG) and continuous grazing (CG) increased soil labile organic C significantly compared to an ungrazed site since 1999 (UG99) and an ungrazed site since 1979 (UG79). For winter grazing site (WG), no significant differences were found. CO2 production was highest in cASC, while lowest in fASC. Microbial biomass C and dissolved organic C showed the highest values in mASC and were significantly lower in fASC. Grazing increased N mineralization in bulk soils, while it exhibited complex effects in the three ASCs. The results suggest that the rate of C mineralization was related to the rate of N accumulation. To reduce CO2 emission and nutrient loss, and to improve soil quality and productivity, a grazing system with moderate intensity is suggested.  相似文献   

15.
添加无机氮磷与有机肥对土壤有机氮矿化的影响   总被引:4,自引:0,他引:4  
研究分析黄土高源农家厩肥(有机肥)矿化量曲线表明,有机肥中有机氮对土壤供N能力仅在施用初期有一定效果,但其对土壤有效氮的贡献并不大。加入无机氮磷和有机肥后如除去带入的有效氮素,对土壤原有的有机氮分解无促进作用,且矿化量还有一定程度的减少。加入N、P肥后,仅粮草3年轮作处理矿化量有所增加。为+6.3%;其科裸地、玉米连作、粮饲豆4年轮作矿化量均减少,其减幅分别为35.3%、34.8%和44.6%。加入有机肥后,除有机肥84d矿化量外,仅裸地处理矿化量有所增加(171.6%),其余处理矿化量均减少。  相似文献   

16.
Zeller  V.  Bahn  M.  Aichner  M.  Tappeiner  U. 《Biology and Fertility of Soils》2000,31(5):441-448
 A field study was conducted to investigate the effect of abandonment of management on net N mineralization (NNM) in subalpine meadows. NNM, soil microbial biomass N (SMBN), fungal biomass and physicochemical characteristics (total C, total N, dissolved organic carbon (DOC) and pH) were determined in surface (0–10 cm) soil from May to October 1997 in an intensively managed and an abandoned meadow at 1770 m a.s.l.. The cumulative NNM was lower in the abandoned area and ranged from 150 to 373 and from 25 to 85 μg N g–1 soil in the intensively managed and the abandoned areas, respectively. The total organic C increased in the abandoned area, while total N showed no difference between abandoned and managed meadow. SMBN showed no difference between the investigated sites, whereas ergosterol, a measure of fungal biomass, increased significantly at the abandoned site. The cumulative NNM was negatively correlated with total organic C, C : N ratio, DOC and ergosterol content, and positively correlated with the NH4 +-N content of soil. The decrease in NNM at the abandoned site may be explained by the lower availability of N in substrates characterized by a high C : N ratio which, together with a decrease in pH in the litter layer, may have increased fungal biomass. Received: 8 January 1999  相似文献   

17.
We investigated the effects of applying hairy vetch foliage on nodulation and atmospheric nitrogen (N2) fixation in soybean cultivated in three soil types in pot experiments. Soybean plants were grown in Gley Lowland soil (GLS), Non-allophanic Andosol (NAS), and Sand-dune Regosol (SDR) with hairy vetch foliage application in a greenhouse for 45 days. In GLS, the nodule number was not influenced by the application, however, nodule dry weight and N2 fixation activity tended to increase. In NAS and SDR, nodule formation was depressed by foliage application. Soybean plant growth was promoted in GLS and SDR but not in NAS. These promotive effects of hairy vetch foliage application on soybean plant growth in GLS were considered to be mainly caused by the increase in N2 fixation activity of the nodules, whereas it was considered to be mainly caused by the increase in nitrogen uptake activity of the roots in SDR. The varying effects of hairy vetch foliage application on soybean nodulation may be due to soil chemical properties such as pH and cation exchange capacity, which are related to soil texture. Therefore, we conclude that it is important to use hairy vetch for soybean cultivation based on the different effects of hairy vetch on soybean plant growth in different soil types.  相似文献   

18.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

19.
室内恒温培养条件下,将N-丁基硫代磷酰三胺(NBPT)与UAN氮溶液配施,测定其氮素转化和氨挥发动态变化,研究NBPT与UAN氮溶液配施对灰漠土、潮土和红壤上氮素转化和氨挥发的影响.结果表明:?(1)对比尿素,在施肥早期(6 h~7 d),UAN氮溶液能分别多提供占施氮量0%~46.67%的无机氮供应,灰漠土和潮土上U...  相似文献   

20.
Mineralization and immobilization processes were studied in a soil treated with ammonium sulphate, calcium ammonium nitrate, urea, urea ammonium phosphate or suphala along with unhumified dung. The conversion of fertilizer nitrogen into non-KCI extractable fractions occurred within two weeks and was relatively rapid in the samples treated with urea and urea ammonium phosphate. The mineral nitrogen content during incubation studies was highest in calcium ammonium nitrate treated soils. Amino acid nitrogen appeared to be the main fraction involved in the immobilization and mineralization of nitrogen in soil. Dung behaved as an efficient nitrification inhibitor and slowed the release of nitrogen from fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号