首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Huang  B.  Kuo  S.  Bembenek  R. 《Water, air, and soil pollution》2003,147(1-4):109-127
Some phosphorus and trace element fertilizers may contain elevatedamounts of toxic metals such as cadmium (Cd) and repeated uses of the fertilizers at high rates over time may increase Cd uptake by plants. This greenhouse study investigated the availability to leaf lettuce (Lactuca sativa L.) (Royal Green) of Cd in a western phosphate rock (PR), and a zinc (G-Zn) and an iron (IR) fertilizers that are by products of industrial wastes. The water-soluble CdCl2 was included in the study for comparison. Applications of Cd from the fertilizers orCdCl2 up to 16 times the Canadian Standards for maximum annual Cd loading limit increased soil total Cd. This was true also for the labileCd extractable by DTPA (diethylenetriaminepentaacetic acid) or 0.05 M CaCl2 for all Cd sources except IR. Lime and Cd source and rate allaffected Cd availability in the soil and accumulation by the plant. Theadded Cd from CdCl2 was more labile and readily available to the plant than the added Cd from the PR or G-Zn. Lettuce-Cd was best describedby CaCl2-Cd (r2 = 0.782), followed by DTPA-Cd (r2 = 0.686), with soil total Cd being least effective in predicting lettuce-Cd (r2 = 0.186). If soil total Cd has to be used in describing Cd accumulation bythe plant, it should be included with pH in a stepwise multiple regression. The Cd transfer coefficient for the fertilizers should be measured based on labile Cd extractable by CaCl2 or DPTA, instead of soil total Cd. The labile-based Cd transfer coefficient could improve the assessment ofthe risk of human exposure to the metal in the fertilizers through consumption of the food crop.  相似文献   

2.
Abstract

The transformation of added phosphorus (P) to soil and the effect of soil properties on P transformations were investigated for 15 acid upland soils with different physicochemical properties from Indonesia. Based on oxide-related factor scores (aluminum (Al) plus 1/2 iron (Fe) (by ammonium oxalate), crystalline Al and Fe oxides, cation exchange capacity, and clay content) obtained from previous principal component analyses, soils were divided into two groups, namely Group 1 for soils with positive factor scores and Group 2 for those with negative factor scores. The amounts of soil P in different fractions were determined by: (i) resin strip in bicarbonate form in 30 mL distilled water followed by extraction with 0.5 mol L?1 HCl (resin-P inorganic (Pi) that is readily available to plant), (ii) 0.5 mol L?1 NaHCO3 extracting Pi and P organic (Po) (P which is strongly related to P uptake by plants and microbes and bound to mineral surface or precipitated Ca-P and Mg forms), (iii) 0.1 mol L?1 NaOH extracting Pi and Po (P which is more strongly held by chemisorption to Fe and Al components of soil surface) and (iv) 1 mol L?1 HCl extracting Pi (Ca-P of low solubility). The transformation of added P (300 mg P kg?1) into other fractions was studied by the recovery of P fractions after 1, 7, 30, and 90 d incubation. After 90 d incubation, most of the added P was transformed into NaOH-Pi fraction for soils of Group 1, while for soils of Group 2, it was transformed into resin-Pi, NaHCO3-Pi and NaOH-Pi fractions in comparable amounts. The equilibrium of added P transformation was reached in 30 d incubation for soils of Group 1, while for soils of Group 2 it needed a longer time. Oxide-related factor scores were positively correlated with the rate constant (k) of P transformation and the recovery of NaOH-Pi. Additionally, not only the amount of but also the type (kaolinitic) of clay were positively correlated with the k value and P accumulation into NaOH-Pi. Soils developed from andesite and volcanic ash exhibited significantly higher NaOH-Pi than soils developed from granite, volcanic sediments and sedimentary rocks. Soil properties summarized as oxides-related factor, parent material, and clay mineralogy were concluded very important in assessing P transformation and P accumulation in acid upland soils in Indonesia.  相似文献   

3.
A greenhouse experiment was designed to determine the cadmium (Cd) and lead (Pb) distribution and accumulation in parsley plants grown on soil amended with Cd and Pb. The soil was amended with 0, 5, 10 20, 40, 60, 80, and 100 mg Cd kg?1 in the form of cadmium nitrate [Cd(NO3)2] and 0, 5, 10, 50 and 100 mg Pb kg?1 in the form of lead nitrate [Pb(NO3)2]. The main soil properties; concentrations of the diethylenetriaminepentaacetic acid (DTPA)–extractable metals lead (Pb), Cd, copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) in soil; plant growth; and total contents of metals in shoots and roots were measured. The DTPA-extractable Cd was increased significantly by the addition of Cd. Despite the fact that Pb was not applied, its availability was significantly greater in treatments 40–100 mg Cd kg?1 compared with the control. Fresh biomass was increased significantly in treatments of 5 and 10 mg Cd kg?1 as compared to the control. Further addition of Cd reduced fresh weight but not significantly, although Cd concentration in shoots reached 26.5 mg kg?1. Although Pb was not applied with Cd, its concentration in parsley increased significantly in treatments with 60, 80, and 100 mg Cd g?1 compared with the others. Available soil Pb was increased significantly with Pb levels; nevertheless, the increase was small compared to the additions of Pb to soil. There were no significant differences in shoot and root fresh weights between treatments, although metal contents reached 20.0 mg Pb kg?1 and 16.4 mg Pb kg?1 respectively. Lead accumulation was enhanced by Pb treatments, but the positive effect on its uptake was not relative to the increase of Pb rates. Cadmium was not applied, and yet considerable uptake of Cd by control plants was evident. The interactive effects of Pb and Cd on their availability in soil and plants and their relation to other metals are also discussed.  相似文献   

4.
High arsenic (As), cadmium (Cd), lead (Pb), and nitrate (NO3?) concentrations in soil pose a risk for the human population and compromise food safety. The goal of this study was to obtain preliminary approximations for the expected mean values of As, Cd, Pb, and N-NO3 in three leafy vegetables (lettuce, spinach, and chard) grown in the central farming regions of Chile. Representative samples (n = 148) of these crops were collected from the Coquimbo, Valparaíso, and Metropolitana Regions. Water extraction and an ion-selective electrode were used to determine NO3? contents, while total As, Cd, and Pb contents were determined by atomic absorption spectroscopy. The recorded values were 23.8%, 59.2%, and 97.9% below detection limits for As, Cd, and Pb, respectively. Furthermore, As and Cd intake by leafy vegetables reached 0.26 and 2.30% of the daily intake levels estimated by Chilean authorities. The daily NO3? intake by leafy vegetables was 0.44 mg per kg of bodyweight per day (kgbw?1day?1), or 12% of the WHO-recommended intake. No analyses were performed for Pb due to highly left-censored data. While the recorded NO3?, As, and Cd concentrations in lettuce, spinach, and chard do not apparently pose a health risk, further detailed studies are suggested.  相似文献   

5.
ABSTRACT

Hydroponic culture solutions containing bicarbonate (HCO3 ?) may be used to screen crops such as soybeans (Glycine max) for resistance to iron (Fe) deficiency or chlorosis. Some successful methods use sodium bicarbonate (NaHCO3) in combination with elevated partial pressures of carbon dioxide (CO2) to buffer pH and elevate bicarbonate. Replacing NaHCO3 with magnesium bicarbonate [Mg(HCO3)2] as the form of bicarbonate alkalinity has the potential to produce culture solutions that simulate soil solutions more closely and eliminate any potential for specific sodium (Na) toxicities in sensitive plants. A modified screening solution based on Mg(HCO3)2-CO2 was tested against the successful NaHCO3-CO2 method, using three soybean varieties of known resistance to Fe-deficiency chlorosis. Alkalinity was 10 mM [added as NaHCO3 or Mg(HCO3)2], solutions were aerated with 3% CO2, and Fe was provided as FeDTPA (diethylenetriamine-pentaacetic acid) at 15 μM (low Fe) or 60 μM (adequate Fe). Leaf chlorophyll, visual chlorosis index, and leaf Fe concentration were closely related. Solutions based on NaHCO3 or Mg(HCO3)2 provided identical chlorosis-susceptibility rankings for the three cultivars.  相似文献   

6.
A pot experiment was conducted to investigate the effect of chromium compost (0, 10, 30, and 50%) on the growth and the concentrations of some trace elements in lettuce (Lactuca sativa L.) and in the amended soils. Compost addition to the soil (up to 30%) increased dry matter yield (DMY); more than 30% decreased DMY slightly. The application of compost increased soil pH; nitric acid (HNO3)–extractable copper (Cu), chromium (Cr), lead (Pb), and zinc (Zn); and diethylenetriaminepentaacetic acid (DTPA)–, Mehlich 3 (M3)–, and ammonium acetate (AAc)–extractable soil Cr and Zn. The addition of Cr compost to the soil increased tissue Cr and Zn but did not alter tissue cadmium (Cd), Cu, iron (Fe), manganese (Mn), nickel (Ni), and Pb. The Cr content in the lettuce tissue reached 5.6 mg kg?1 in the 50% compost (326 mg kg?1) treatment, which is less than the toxic level in plants. Our results imply that compost with high Cr could be used safely as a soil conditioner to agricultural crops.  相似文献   

7.
Abstract

Plants commonly suffer from phosphorus (P) deficiency in calcareous soils. Plant responses to P application on such soils mostly show poor correlation with their soil test P values. Experiments were conducted on 24 different soil samples under laboratory and greenhouse conditions to illustrate the relationship of various inorganic P fractions in different calcareous soils with P uptake by plants, P extraction by iron‐impregnated filter paper, and P soil test values estimated by 0.5M NaHCO3 and ammonium bicarbonate diethylene triamine penta‐acetic acid. Total P in the 24 soils ranged from 652 to 1245 mgkg?1 with a mean of 922 mgkg?1. A major proportion (98%) of inorganic P was in HCl‐P (Ca‐bound) form. The HCl‐P (Ca‐bound) ranged from 296 to 729 with a mean of 480 mgkg?1. The iron (Fe) and aluminum (Al)‐P (NaOH‐P) ranged from 0.92 to 12 mgkg?1 with a mean of 1.57 mgkg?1. The Fe‐P (citrate‐dithionite bicarbonate) ranged from 0.22 to 4.40 mgkg?1 with a mean of 5.99 mgkg?1. Data regarding P release from the soil matrix obtained by desorption with iron‐impregnated filter paper was best described by the Elovich equation. Range of slope and intercept values were found to be 5.48 to 17.3 and 17.23 to 56.27 mgkg?1, respectively. Intercept values calculated for the Elovich equation may be related to labile P initially available for plant uptake in soils. Intercept values calculated for the Elovich equation correlated (r=0.77) significantly (p<0.01) with NaHCO3 extractable (Olsen‐P)P. Significant correlation (p<0.05) of intercept with CDB‐P (r=0.44) and of slope with HCl‐P (0.43) suggested that the initially available P, regulated through CDB‐P, is replenished by HCl‐P [calcium (Ca) bound].  相似文献   

8.
Abstract

Lead arsenate was extensively used to control insects in apple and plum orchards in the 1900s. Continuous use of lead arsenate resulted in elevated soil levels of lead (Pb) and arsenic (As). There are concerns that As and Pb will become solubilized upon a change in land use. In situ chemical stabilization practices, such as the use of phosphate‐phosphorus (P), have been investigated as a possible method for reducing the solubility, mobility, and potential toxicity of Pb and As in these soils. The objective of this study was to determine the effectiveness of calcium carbonate (lime), P, and iron (Fe) amendments in reducing the solubility of As and Pb in lead‐arsenate‐treated soils over time. Under controlled conditions, two orchard soils, Thurmont loam (Hapludults) and Burch loam (Haploxerolls), were amended with reagent‐grade calcium carbonate (CaCO3), iron hydroxide [Fe(OH)3], and potassium phosphate (KH2PO4) and incubated for 16 weeks at 26°C. The experimental results suggested that the inorganic P increased competitive sorption between H2PO4 ? and dihydrogen arsenate (H2AsO4 ?), resulting in greater desorption of As in both Thurmont and Burch soils. Therefore, addition of lime, potassium phosphate, and Fe to lead‐arsenate‐contaminated soils could increase the risk of loss of soluble As and Pb from surface soil and potentially increase these metal species in runoff and movement to groundwater.  相似文献   

9.
Phytoremediation is an attractive, economic alternative to soil removal and burial methods to remediate contaminated soil. However, it is also a slow process. The effect of humic acid in enhancing B and Pb phytoextraction from contaminated soils was studied (pot experiment) using transplanted vetiver grass (Vetiveria zizanioides (L.) Nash). Boron was applied at 0, 45, 90 and 180 kg B ha?1 soil (as H3BO3) in 16 replicates. Of the 64 pots, four pots each were treated with 0, 100, 200 and 400 kg ha?1 humic acid (HA) solution. In a separate experiment, Pb was applied (as Pb(NO3)2) at 0, 45, 90 and 180 kg Pb ha?1 prior to addition of HA solutions at levels identical to the B experiment. Experiments were conducted using a randomized complete block design with four replicates. Vetiver grass was harvested 90 days after planting. Lead addition beyond 45 kg Pb ha?1 decreased Pb uptake mostly due to a yield decline. Humic acid application increased Pb availability in soil and enhanced Pb uptake while maintaining or enhancing yield. An application of 200 kg HA ha?1 was optimal for maintaining yield at elevated Pb levels. Boron application did not impact yield but greatly increased B content of roots and shoot. Boron uptake was greatest upon addition of 400 kg HA ha?1. We conclude that HA addition to vetiver grass can be an effective way to enhance phytoremediation of B and Pb but optimum rates differ depending on soil B and Pb contamination levels.  相似文献   

10.
A study was conducted to assess the suitability of extractants for soil-available arsenic (As) under kharif rice (MTU-7029). Ten soil samples were collected from different locations of varying topography and land-use patterns from Nonaghata-Uttarpara of West Bengal. A pot study with MTU-7029, exposed to varying levels of arsenic (0 to 90 mg kg?1 of soil), was conducted for two successive years. Eight extractants, namely sodium bicarbonate (NaHCO3), ammonium acetate (CH3COONH4), monopotassium phosphate (KH2PO4), hydrochloric acid (HCl) + sulfuric acid (H2SO4), ammonium carbonate [(NH4)2CO3], sodium hydroxide (NaOH), malic–citric acid, and ethylenediaminetetraacetic acid (EDTA), were assessed. Soil test and crop uptake correlations revealed that 0.5 M NaHCO3 was the best extractant. In a lateral study, three soils were collected from a conventional rice field of Nonaghata-Uttarpara, Gotera, and Ghentughachi of West Bengal and sequentially extracted. The results showed that the relative abundance of As fractions were in the order of water-soluble As < Ca As < Al As < amorphous Fe As < crystalline Fe As.  相似文献   

11.
Two methods for measuring adenosine 5'-triphosphate (ATP) in soil were compared, one based on extraction with NaHCO3-CHCl3 and thel other on extraction by a trichloracetic acid-phosphate-paraquat reagent. Recoveries of added ATP were greater with the NaHCO3-CHCl3 reagent but the extraction of “native” soil ATP by NaHCO3-CHCl3 was only about a third of that by TCA-phosphate-paraquat.Microbial biomass C and ATP were measured in 8 contrasting English soils, using the fumigation method to measure biomass C and the TCA-phosphate-paraquat method to measure ATP. Except in one acid woodland soil, the ratio (ATP content of the soil)/(biomass C content of the soil) was relatively constant, with a mean of 7.3 mg ATP g?1 biomass C for the different soils. This value is very similar to that obtained earlier in a range of 11 grassland and arable soils from Australia. Taking the English and Australian grassland and arable soils together, there is a close (r = 0.975) linear relationship between ATP and microbial biomass C that holds over a wide range of soils and climates. From this relationship, the soil biomass contains 7.25 mg ATP g?1 biomass C, equivalent to an ATP-to-C ratio of 138, or to 6.04 μmoles ATP g?1 dry biomass.The acid woodland soil (pH 3.9) contained much less biomass C, as measured by the fumigation method, than would have been expected from this relationship. This, and other evidence, suggests that the fumigation method for measuring microbial biomass C breaks down in strongly acid soils.The ATP content of the biomass did not depend on the P status of the soil, as indicated by NaHCO3-extractable P.  相似文献   

12.
对比研究了酸、中、石灰性紫色土添加砷、铅后其形态分配变化及化学、生物有效性特征。试验表明:砷、铅在三种紫色土中形态分配不同,外源砷、铅分配与原始土样本底值有较大差异。从提取能力、生物效应方面比较了几种浸提剂效果,认为:用0.5N NaHCO3提取As、2.5%HAc提取Pb可以较好地表征3种紫色土砷、铅的有效量。植物吸收砷、铅与土壤有效量有较好的相关性,但吸收形态却因土而异。试验还证明,As的形态分级中H3BO3可以很好地掩敝F-对比色的干扰。  相似文献   

13.
Abstract

The total and available strontium (Sr) contents of the experimental soil in the National Long‐Term Fertilization Trials set up in 1968 in Keszthely were compared in correlation to the Sr content of the Ramann‐type brown forest soil and different long‐term P‐fertilizer treatments. The Sr uptake by lettuce was also studied. Soil samples were taken from the 0‐ to 20‐cm depth in the 32nd year of the experiment from plots given different P fertilizer treatments (0–50–100–150–200 kg P2O5 ha?1 y?1). The total and available Sr content of soils were measured using ICP‐AES. A positive linear correlation was established between the total and available Sr contents of the experimental soils. The total and available soil Sr contents were significantly higher in large dose P‐fertilizer treatments than in case of lower doses. The Sr concentration of lettuce was four to eight times greater than the available Sr content of the soil samples, and Sr accumulation was observed in lettuce leaves.  相似文献   

14.
《Applied soil ecology》2009,42(3):351-359
Beringite (B) and zerovalent iron grit (Z), singly and in combination (BZ), were added to a loamy sand soil contaminated by trace elements (Reppel, Belgium), mainly by arsenic (As), to reduce As labile fractions and phytoavailability. An uncontaminated sandy soil was studied for comparison. Soils were placed in large lysimeters cultivated with maize and vegetables for 6 years. pH, organic C and total N content increased in amended soils. The Z and BZ treatments reduced the Ca(NO3)2 extractable soil As and As uptake by lettuce. The BZ lettuces had also the lowest foliar Pb, Cd, Zn, and Mn concentrations. All amendments had positive effects on the soil microbial biomass and reduced the qCO2. Glucose mineralization was increased in Z and BZ amended soils. Acid phosphomonoesterase activity was higher in the untreated soil than in the other soils; the alkaline phosphomonoesterase, phosphodiesterase and protease activities were increased by Z and BZ treatments, whereas B amendment had less positive effects. Genetic fingerprinting using Denaturing Gradient Gel Electrophoresis (DGGE) revealed shifts in the composition of eubacterial and fungal communities of the amended soils. Microbial species richness decreased rather than increased in the treated soils, regardless of reduced trace element availability and increased soil microbial biomass and activity.  相似文献   

15.
The response of lettuce to production system, organic and phosphate fertilizers and root mycorrhization, was evaluated in two pot trials with factorial treatment combination of: (i) soil type (from organic and from conventional production systems) and organic fertilizer (0, 2 and 4 t ha?1) in the first trial; and (ii) mycorrhizal inoculation (mycorrhized and non-mycorrhized plants) and Gafsa phosphate (0, 100 and 200 kg P2O5 ha?1) in the second. Lettuce growth decreased with increasing rates of the organic fertilizer because of its very high electrical conductivity (50.1 dS m?1) and lack of maturation. However, the fertilizer harmful effects were minimized in the soil from organic production. The application of Gafsa phosphate significantly increased lettuce yield and nutrient uptake. However, for the highest rate of phosphate, mycorrhized lettuce yield decreased compared to non-mycorrhized lettuce, suggesting that high soil available P may have harmful effects on the activity of mycorrhizal fungi.  相似文献   

16.
Although many studies have examined the effect of different application rates of cattle manure, swine manure, and urea fertilizer on the distribution of phosphorus (P) fractions in soil, few studies have correlated P fractions in soil with inorganic P (Pi) and organic P (Po) in leachates. As part of a long-term field study, cattle and swine manures were applied to a loamy soil based on a nitrogen (N) content equivalent of 100 (low) and 400 (high) kg total N ha?1 yr?1 and were compared to urea fertilizer at 100 kg N ha?1 yr?1 and an unamended control soil. Readily available Pi [resin and sodium bicarbonate (NaHCO3)] was significantly greater in cattle manure– and swine manure–amended soil at a high application rate than in the control. With some exceptions, urea did not significantly affect P fractions in sequentially extracted P pools. Leaching of Pi and Po was at levels of environmental concern when cattle and swine manures were applied at the high application rate but not at the low application rate. Cattle manure had significantly greater concentrations of Pi and Po removed by leaching compared to swine manure, most likely because of its narrow N/P ratio and greater amount of P added. Positive correlations were observed between resin Pi and total leachate Pi and between NaHCO3-Pi and total leachate Pi, indicating the value of these measurements in predicting P mobility. The results suggest that a threshold (40 μg P g?1 of soil) must be exceeded before a positive correlation occurs.  相似文献   

17.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

18.
To investigate the effects of different levels of lead (Pb) on the concentration of iron (Fe), manganese (Mn), and zinc (Zn) in Zea mays, an experiment was conducted in a completely randomized design and 4 × 8 factorial arrangement with three replicates on a calcareous soil in a greenhouse. Factors included four levels of Pb (0 as control, 100, 200, and 400 mg Pb kg?1 soil) from PbCl2 source and eight varieties of maize (single cross 260, 301, 302, 500, 604, and 647 and double cross 370). Results showed that the accumulation of Pb was greater in roots than shoots in the maize varieties studied. Increased Pb concentration in soil decreased Mn and Fe in shoot and elevated Fe concentration in roots. The Mn concentration of roots on different levels of Pb was not affected. Zinc concentration of almost all varieties increased in shoots and decreased in roots with the increase of Pb in soil.  相似文献   

19.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

20.
Crop production on red soils in China is largely limited by the low availability of phosphorus, which is frequently attributed to the adsorption of phosphate by variable-charge minerals including Fe and Al oxides and kaolinite. Isotopic tracing analysis and soil incubation were carried out to investigate the desorption and microbial transformation of applied specifically sorbed P in two pH-contrasting light-textured soils. A rapid release of P from the added mineral-P surface complex in the two tested soils was observed. Most of the released P was recovered in a 0.5MNaHCO3 extract and in soil microbial biomass. Microbial biomass-32P was detected at early stages of incubation and reached up to 10–30% of the added 32P. Approximately 50–70% of the added complex 32P, varying between minerals and soils, was extractable in the 0.5MNaHCO3 at 75 days after incubation for the acid soil but up to 120 days for the neutral soil. Microbial biomass-P plus 0.5MNaHCO3-extractable 32P accounted for more than 60–80% of total added complex-32P, implying high desorption and transformation of the specifically sorbed P in the two soils. There was more inorganic 32P than organic 32P in the NaHCO3 extract, suggesting that chemical release of specifically sorbed P was dominant. Ligand exchange and chemical desorption due to a change in environmental conditions such as pH and ionic strength are likely the major mechanisms responsible for the chemical release of specifically sorbed 32P in the tested soils. Received: 29 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号