首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Maricou  H.  Pereira  D.  Verschuere  L.  Philips  S.  Verstraete  W. 《Water, air, and soil pollution》1998,107(1-4):423-442
Using an electronic nose, concentration ranges of volatile fatty acids(VFAs), methane and butane, NH3, HCl, SO2 andN2O have been measured to establish the relation between theconcentration in the liquid or the gas sample and the electronic nosereading. A quantitative sensorial odor perception (SOP) was introduced,based on the average reaction of the twelve available sensors of theelectronic nose. The results of the different compounds showed that thesensors reach a saturation level with increasing concentration. In the lowerconcentration ranges, linearity between concentration and signal outputoccurred. This linear interval was situated for the VFAs between thedetection limit in the range of 5 to 15 g dissolved compound per L distilledwater and the upper limit of 60 g L-1. For the gases, thedetection limit varied between 6 and 690 volumes of gas per million ofvolumes air (ppmv). The upper limit of the linear interval ranged from 100–3000 ppmv depending on the compound. For the olfactometry reference product n-butanol, with a reported olfactory lower threshold valueof 0.04 ppmv, the electronic nose was less sensitive and gave a detectionlimit around 975 ppmv. The different compounds could be visualized in radarplots, which had a specific profile for each compound. The higher theconcentration of the volatile compounds in the air, the larger the surfaceof the respective radarplot. A discriminant analysis showed clusters ofcompounds such as the VFAs, the non polar gaseous compounds methane andbutane and the other more polar gaseous compounds.  相似文献   

2.
In this work, photocatalytic degradation of two reactive dyes, Reactive Yellow 84 (RY 84) and Reactive Black 5 (RB 5), on FeTiO3/TiO2 heterojunction in the presence of UV–visible radiation and H2O2 has been reported. FeTiO3/TiO2 heterojunction has been prepared from ilmenite FeTiO3 and anatase TiO2 by employing oxalic acid as an organic linker. FeTiO3/TiO2 ratios have been varied from 1 to 5 wt.%, and the materials were characterized by X-ray diffraction, scanning electron microscope and diffused reflectance UV–visible spectroscopic analysis. The photocatalytic activity of FeTiO3/TiO2 heterojunction for the degradation of the organic dyes RY 84 and RB 5 in the presence of UV–visible light was found to be higher than that of pure TiO2. The addition of H2O2 increases the rate of degradation of both dyes on FeTiO3/TiO2 heterojunction. It facilitates the fast degradation of dye solutions even when their concentration was above 100 mg/l, which is otherwise very slow due to the low transmittance of light by the dye solution. The extent of mineralisation of the reactive dye during photocatalytic degradation was estimated from chemical oxygen demand analysis. FeTiO3/TiO2 heterojunction photocatalyst was also found to have good photostability; the material retains almost 97 % of its initial activity even in the fifth cycle.  相似文献   

3.
The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.  相似文献   

4.
5.
该文对TiO2纳米粒子气固光催化降解果蔬贮藏环境乙烯技术进行了初步研究。采用溶胶-凝胶法制备的纳米TiO2薄膜作光催化剂,利用自行设计的气固光催化实验系统,研究了乙烯浓度、紫外光作用时间对光催化降解反应的影响,探讨了乙烯的光催化降解的动力学。结果显示:该研究所制备的TiO2锐钛矿型含量为48.766%,比表面积为47.186 m2/g,具有良好的光催化性能;光催化降解乙烯比直接紫外线光降解效果显著,光照10 min时光催化乙烯降解率比直接紫外线光降解提高23.76%;乙烯的降解率随着其浓度的增加而降低;乙烯的光催化降解的动力学可以用Langmuir-Hinshelwood动力学方程加以描述。  相似文献   

6.
Photocatalytic reduction of CO2 in seawater into chemical fuel, methanol (CH3OH), was achieved over Cu/C-co-doped TiO2 nanoparticles under UV and natural sunlight. Photocatalysts with different Cu loadings (0, 0.5, 1, 3, 5, and 7 wt%) were synthesized by the sol–gel method and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. Co-doping with C and Cu into TiO2 remarkably promoted the photocatalytic production of CH3OH. This improvement was attributed to lowering of bandgap energy, specific catalytic effect of Cu for CH3OH formation, and the minimization of photo-generated carrier recombination. Co-doped TiO2 with 3.0 wt% Cu was found to be the most active catalyst, giving a maximum methanol yield rate of 577 μmol g-cat?1 h?1 under illumination of UV light, which is 5.3-fold higher than the production rate over C-TiO2 and 7.4 times the amount produced using Degussa P25 TiO2. Under natural sunlight, the maximum rate of the photocatalytic production of CH3OH using 3.0 wt% Cu/C-TiO2 was found to be 188 μmol g-cat?1 h?1, which is 2.24 times higher than that of C-TiO2, whereas, no CH3OH was observed for P25.  相似文献   

7.
The reduction of trichloroethylene (TCE) in the gas phase byFe° was examined under water vapor saturatedconditions (relative humidity (RH) = 100%). The reactionconformed to first-order rate kinetics under anaerobic(N2 atmosphere) conditions and acid-washedFe°exhibited a faster TCE removal rate than unamended (partially oxidized) Fe°, i.e., kobs = 0.015 h-1 versus0.012 h-1. Analysis of the two types of Fe° showedthat 40.3% of the unamended Fe° surface was nonreactive. Experiments with iron oxides, which form commonly on the surface of Fe° exposed to humid air (magnetiteand maghemite), showed that these solids were nonreactive with TCE under anaerobic conditions. Under aerobic conditions (air),TCE reduction occurred in two distinct phases. There was a fastinitial rate followed by a slower later rate of reduction when the oxide layer was formed. Further experiments showed that theFe° surface was saturated with TCE at higher concentrations (K1/2 = 5,397.4 ± 345.4 ppmv) and thatoxygen acted as an irreversible inhibitor of TCE reduction(maximum rate of reaction decreased when oxygen was present).  相似文献   

8.
A low-cost, accurate and sensitive passive measurement method for ozone has been developed and tested. The method is based on the reaction of ozone with indigo carmine which results in colourless reaction products which are detected spectrophotometrically after exposure. Coated glass filters are mounted in a short polystyrene badge-type vessel in which the diffusion path is restricted by a Teflon membrane filter. From wind tunnel experiments good concentration-independent linearity has been found. The detection limit of the method is about 23 ppbv for 1 hour exposure. Tests with interfering oxidants, such as peroxyacetyl nitrate and NO2, indicated no significant effects for common ambient conditions. No humidity effect was found when the relative humidity varied from 20 to 80%. The uptake rate of the sampler is dependent on wind velocity. In general an average air velocity of approximately 0.5 m/s is necessary to ensure a stable collection rate of ozone. This implies the necessity to measure wind speed during exposure or to place the samplers in the wind stream of a small fan. The method is suitable for hourly to daily mean measurements of ambient ozone. Under field conditions an accuracy of 11 ± 9% (40 experiments) was established in comparison to a continuous UV photometric monitor.  相似文献   

9.
As global mercury emissions from coal fire power plants increase with the continuing rise of coal consumption, mercury capture methods are being developed to prevent mercury??s escape into the atmosphere. Titanium dioxide (TiO2) in the presence of ultra violet light (UV-A; ?? max ??360?nm) and oxygen will capture mercury as the solid product HgO(s). Testing the effects of TiO2 in the presence of other pollutants has so far been limited. We have performed kinetic and product studies of mercury adsorption in the presence of the gaseous flue co-pollutant NO2(g). We extensively studied the gas-phase reaction of NO2(g) with Hg (g) 0 . We compared the gas-phase reaction to the same reaction performed in the presence of thin TiO2 particle surfaces from 0 to 100?% relative humidity. The second-order rate constant was measured to be k?=?(3.5?±?0.5)?×?10?35?cm6 molecules?2?s?1, independent of the presence of titania or the total surface area available for adsorption. Exposure of NO2(g) to titania surfaces that were already saturated in captured mercury (HgO(s)) increased total mercury uptake onto the surface. We discuss the implications of this study to the capture of mercury emissions prior to release to the atmosphere.  相似文献   

10.
Abstract

In grassland areas where herbage production has no economic value, the cut grass is often left on the sward surface where its decomposition is influenced by weather conditions. Although the influence of temperature and humidity on decomposition has been investigated under controlled lab conditions, experimentation has generally been under ideal moisture conditions that have not tested the combinations of climatic limitations that might occur in the field. The decomposition of mown turfgrass clippings deposited at different times of vegetation period was studied in situ using nylon bags during the first 8 weeks after deposition to investigate the effect of weather conditions (the air temperature, relative humidity, precipitation) on decomposition. Decomposition is the highest in the case of high air humidity and temperature of 10°C. Limiting factors for decomposition at temperatures above 10°C is the air humidity and below 10°C the air temperature. The general tendency was that the rate of decomposition increased with increasing air temperature up to 10°C, but with further increases of air temperature the decomposition rate slowed down. Relative air humidity had a variable impact (at the beginning of the decomposition process (weeks 1–2) the influence was negative, during weeks 3–8 of the decomposition process the effect was positive), and hence had no generalized relationship with decomposition over the studied decomposition period (weeks 1–8). The most significant influence of weather conditions on the decomposition rate was recorded directly after cutting. If the cutting was done during hot weather conditions, the material was drying fast and therefore decomposed slowly. Our results indicate that for fast decomposition of clippings it is important to maintain the freshness of material. Lower decomposition rates occurred during conditions of hot and dry weather, and also cooler (temperature near to 0°C) weather, and can be compensated as soon as favourable weather arrives.  相似文献   

11.
Biotic and abiotic decomposition of organic matter in soils The problem area of organic matter decomposition in soils by biotic, abiotic and photochemical mechanisms is tested under administration of uniformly 14C-labelled wheat straw, humic of fulvic acids; furthermore by the use of conventional methods. In four separate test runs, based on Hapludalf-Ah soil, formed in loess, as well as on Ah soil of a spodic Dystrochrept in pleistocene sand, measurements over years - altogether 57 measurement cycles - revealed similar decomposition rates of 14C fulvic and 14C humic acid. The approximate magnitudes of turnover were: biotic: abiotic (Hg-sterilization): biotic + UV-irradiation: abiotic + UV-irradiation = 100:20:70:50. The sterilized samples continued to release CO2. Biotic + UV showed losses, compared with biotic, by partial UV sterilization. Abiotic + UV indicated increasing CO2 release, compared with abiotic only, due to additional photochemical decomposition. In a larger program with radioactive as well as conventional methods of CO2 measurement decomposition rates in different soils were tested under biotic, abiotic and photochemical condition in presence of metal ions, such as iron, aluminium, copper, zinc, lead and mercury. The impact by the added metals can be summerized as follows: Calcium and aluminium are favoring the organic matter decomposition under biotic conditions, while mercury, lead, copper, zinc and iron are rather inhibitive. Contrary, under biotic/steril conditions copper and especially mercury, further zinc and lead, at lower extent also calcium, impede CO2 liberation. Since there are but small differences among the various test soils, soil own parameters seem to exert under abiotic conditions low importance only. Under UV irradiation calcium had in the biotic milieu high, in the steril/abiotic milieu a lower increasing effect upon COz liberation. Also iron indicates a stimulating effect under contemporary UV irradiation, which at lower level applies to lead and mercury too, particularly in connection with the sandloess Hapludalf of Harburg. Based on the observed CO2 release also under abiotic/steril conditions final tests were conducted with calcinated quartzsand in contrast to soil, otherwise again under biotic, abiotic, as well as biotic or abiotic + UV conditions. Also in these calcinated sands 14CO2 release from the 14C labelled straw continued. Addition of increasing amounts of aluminiumlactate causes decreasing 14CO2 rates. An even stronger inhibition was produced by addition of zinclactate.  相似文献   

12.
CO2 enrichment experiments were performed during two vegetation periods on young beech stands in four closed mini-greenhouses. The houses were climatized according to the outside microclimate (±0,5 °C,±15 % rel. air humidity, wind speed approximately to outside in the range of 0.5 – 2.5 m s?1, max. 17 % PAR reduction). The model ecosystems — consisting of 36 young beech (2.5 yr-old) in a soil block of 0.38 m3 and an air volume of 0.64 m3 — were exposed to CO2 concentrations of the unchanged ambient air (350±34 ppmv, control) and of 700 ppmv (698±10 ppmv). Plant growth parameters were measured non distructively and at the end of the 1st season samples were taken for weighing the phytomass. CO2 gas exchange of the stands taken as a whole were continuously measured with two entire mini-greenhouses and, in addition, a compact mini-cuvette system (CMS 400, Walz) was used for measuring dark respiration and CO2 net assimilation rates of single leaves in both stands. Under the influence of the additional CO2 supply stem diameter (2 cm above the first lateral roots) was increased by 13.5 %, stem height by 27.4 %, and the number of leaves/tree by 33 % at the end of the 2nd season. The number of buds was not significantly different and the effect on mean area per leaf was insignificant. Leaf area index was by 1.4 units greater. All dry weights of the main organs were increased after the 1st season: leaf 60 %, stem 34 %, bud 54 %. Roots <2 mm φ weighed 1.5-fold more and roots > 2 mm φ 1.7-fold more under elevated CO2. CO2 gas exchange of two systems was measured. Whole system CO2 losses during night as well as photosynthetic CO2 gains during days were greater at 700 ppmv than in the control system. However, if one balances CO2 gains with CO2 losses over a period of five days in August both model-ecosystems taken as a whole were sinks for CO2. During this selected time period of 5 days at the peak of the season the beech stand at 350 ppmv was the greater sink. At 350 ppmv CO2 (control) the average leaf respiration for 20 °C amounted to 0.31±0.18 and at 700 ppmv to 0.57± 0.42 μmol CO2 m?2 s?1 (n=35/40, t=3.48, α < 0.05), and correlated positively with leaf temperature. At light saturation the mean net assimilation rate was 4.48 μmol m?2 (leaf area) s?1 in the control and 6.21 μmol m?2 s?1 at the high CO2 concentration corresponding with an enhancement factor of 1.39 for the selected time period. Results from the whole stand and from single leaf measurements are compared by means of mathematical modelling procedures in order to quantify CO2 enrichment effects on beech model ecosystems.  相似文献   

13.
We describe experiments to better understand how CH4 oxidation rates by different methanotroph communities respond to changing CH4 concentrations. We used a novel system of automatically monitored chambers to investigate the response of CH4 oxidation rates in a New Zealand pasture and adjacent pine forest soil exposed to varying atmospheric CH4 concentrations.Type II methanotrophs that dominate CH4 oxidation in the forest soil became progressively saturated as CH4 concentrations rose from ambient (1.8 ppmv) to 570 ppmv, as shown by a decrease in uptake efficiency from 20% to 2% removal. By contrast, CH4 oxidation in the pasture soil where Type I methanotrophs dominate increased in proportion to the increase in CH4 inlet concentration, oxidising about 2% of the inlet CH4 flux throughout. Modelling based on Michaelis-Menten kinetics revealed that low-affinity (Type I) methanotrophs were solely responsible for CH4 oxidation in pasture soils, whereas high affinity (Type II) methanotrophs only contributed about 10% of the CH4 oxidation in the forest soil. Increased aeration status using a soil–perlite (1:1) mixture doubled CH4 oxidation rates at both ambient (1.8 ppmv) and 40 ppmv atmospheric CH4. A similar volcanic soil previously exposed for 8 y to high CH4 fluxes from a landfill had removal efficiencies consistently above 95% for atmospheric CH4 concentrations up to 7500 ppmv when the CH4 oxidation rate was7000 μg CH4 kg−1soil h−1.  相似文献   

14.
The present work focused on treatment of eosin (EO) by photocatalysis (PC) combined with electrocatalysis (EC) process. Bismuth oxychloride/titanium dioxide (BiOCl/TiO2) hybrid particles, which were used as new heterogeneous photocatalysts, were exploited in a reverse microemulsion approach and were characterized by XRD, UV?CVis diffuse spectra, BET, and SEM technologies. All degradation experiments were performed using a self-assemble experimental setup, in which PC and EC could be carried out simultaneously or individually. The results indicated that BiOCl/TiO2 showed enhanced photocatalytic performance under UV irradiation, and 50% BiOCl/TiO2 exhibited the best photoactivity due to its high degree of crystallization, the mesoporous structure and corresponding large special surface area, improved absorption ability in UV region, and the heterojunction formed between two coupling particles. The combined degradation process displayed synergistic effect on the degradation of EO owing to the generation of H2O2 at graphite cathode. The parameters such as, pH, reaction current, and initial concentration of EO were monitored in order to optimize the operating conditions. Pseudo-first-order kinetics was proposed and roughly fitted the combined degradation of EO. The combined system in this work suggested a new research idea for the degradation of dye wastewater.  相似文献   

15.
The partial phase transformation of nanometer TiO2 powder from anatase phase to rutile phase was realized by heat-treatment and a new TiO2 photocatalyst which could be excited by visible light was obtained. The heat-treated TiO2 powder at different stage of transition crystal was characterized and monitored by XRD, TEM, FT-IR and UV–vis DRS methods. The test of photocatalytic activity of the heat-treated TiO2 powder was carried out by the photocatalytic degradation of rhodamine B and acid orange II dyes, respectively, in aqueous solution under visible light irradiation. The results indicate that the nanometer TiO2 photocatalyst heat-treated at 500°C for 60 min shows the highest photocatalytic activity, that is, it can effectively degrade the rhodamine B and acid orange II under visible light irradiation. The remarkable improvement of photocatalytic activity of heat-treated TiO2 powder at 500°C for 60 min was mainly illustrated by the formation of special interphase between rutile and anatase phases, which not only restrains the recombination of photogenerated electrons and holes, but also reduces the adsorbability of nanometer anatase TiO2 powder properly for various dyes. Additionally, the effects of dye-assisting chemicals such as Na2CO3 and NaCl on the photocatalytic degradation were also studied.  相似文献   

16.
The global warming has a potential for acceleration of labile soil organic carbon decomposition. Arrhenius equation is one of the useful equation for predicting temperature sensitivity of carbon decomposition, with the activation energy of rate constant being a key factor. The purpose of this study is the evaluation of temperature sensitivity of labile soil organic carbon decomposition under anaerobic condition in wetland soil using the activation energy of rate constant among different vegetation types. The soil samples were incubated at three different temperatures (10, 20, and 30°C) under anaerobic condition and carbon decomposition rates (sum of CO2 and CH4 production) were measured by gas chromatography. The first-order kinetic model with Arrhenius equation was used for approximate of anaerobic carbon decomposition. For determination of activation energy of rate constant, non-linear least-squares method was conducted between observed carbon decomposition rate and predicted carbon decomposition rate which calculated by Arrhenius equation. The activation energy of rate constant of anaerobic labile soil organic carbon decomposition was different among vegetation types. We successfully determined the activation energy of rate constant of CO2 or CH4 production from Phragites, Juncus, and Miscanthus+Cirsium-dominated vegetation soil with Arrhenius equation. Hence, this study suggests that Arrhenius equation was useful for evaluation of temperature sensitivity of labile soil organic carbon decomposition not only aerobic condition, but also anaerobic condition among several vegetation types in the wetland ecosystem. Moreover, gaseous carbon production from soil under Juncus yocoscensis dominated soil appeared higher activation energy and temperature sensitivity than that from soil under other vegetation types.  相似文献   

17.
Human activity has induced a multitude of global changes that are likely to affect the functioning of ecosystems. Although these changes act in concert, studies on interactive effects are scarce. Here, we conducted a laboratory microcosm experiment to explore the impacts of temperature (9, 12 and 15 °C), changes in soil humidity (moist, dry) and plant diversity (1, 4, 16 species) on soil microbial activity and litter decomposition.We found that changes in litter decomposition did not mirror impacts on microbial measures indicating that the duration of the experiment (22 weeks) may not have been sufficient to determine the full magnitude of global change effects. However and notably, changes in temperature, humidity and plant litter diversity/composition affected in a non-additive way the microbial parameters investigated. For instance, microbial metabolic efficiency increased with plant diversity in the high moisture treatment but remained unaffected in low moisture treatment suggesting that climate changes may mask beneficial effects of biodiversity on ecosystem functioning. Moreover, litter decomposition was unaffected by plant litter diversity/composition but increased with increasing temperature in the high moisture treatment, and decreased with increasing temperature in the low moisture treatment.We conclude that it is inevitable to perform complex experiments considering multiple global change agents in order to realistically predict future changes in ecosystem functioning. Non-additive interactions highlight the context-dependency of impacts of single global change agents.  相似文献   

18.
In this study adsorption of arsenic (As) onto TiO2 nanoparticles and the facilitated transport of As into carp (Cyprinus carpio) by TiO2 nanoparticles was examined. Adsorption kinetics and adsorption isotherm were conducted by adding As(V) to TiO2 suspensions. Facilitated transport of As by TiO2 nanoparticles was assessed by accumulation tests exposing carp to As(V) contaminated water in the presence of TiO2 nanoparticles. The results showed that TiO2 nanoparticles had a significant adsorption capacity for As(V). Equilibrium was established within 30 min and the isotherm data was described by Freundlich isotherm. The KF and 1/n were 20.71 mg/g and 0.58, respectively. When exposed to As(V)-contaminated water in the presence of TiO2 nanoparticles, carp accumulated considerably more As, and As concentration in carp increased by 132% after 25 days exposure. Considerable As and TiO2 accumulated in intestine, stomach and gills of the fish, and the lowest level of accumulation was found in muscle. Accumulation of As and TiO2 in stomach, intestine and gills are significant. Arsenic accumulation in these tissues was enhanced by the presence of TiO2 nanoparticles. TiO2 nanoparticles that have accumulated in intestine and gills may release adsorbed As and As bound on TiO2 nanoparticles which cannot be released maybe transported by TiO2 nanoparticles as they transferred in the body. In this work, an enhancement of 80% and 126% As concentration in liver and muscle after 20 days of exposure was found.  相似文献   

19.
The decomposition of atmospheric hydrogen in different types of soil was measured. The decomposition of H2 was apparently a first-order reaction. H2 decomposition activity was proportional to the amount of soil with maximum activities at soil water contents of approx. 6–11% (w/w). The activity was lower under anaerobic conditions, but was constant between 1–20% O2. It was destroyed by autoclaving and was partially inactivated by fumigation with NH3, CHC13 or acetone, by u.v. irradiation and by treatment with NaCN or NaN3, indicating that biological processes in the soil were responsible for the observed H2 decomposition. Treatment of soil with toluene or CHCl3 caused only a partial inactivation. Incubation of soil in the presence of streptomycin or actidione reduced H2 decomposition by less than 50%, whereas CO consumption was abolished. The H2 decomposition rates showed H2 saturation curves with apparent Michaelis-Menten kinetics. Cooperative effects were not observed. Vmax was reached at approx. 200 μl1?1. The Km values for H2 were in the range of 30μl 1?1, but increased to higher values, when the soil had been pretreated with high H2 mixing ratios. Apparently, the observed H2 decomposition by soil is not only due to the activity of viable microorganisms, but soil enzymes as well.  相似文献   

20.
The aim of the present study was to establish the photocatalytic efficiency of Fe-doped TiO2 nanocatalysts toward polycyclic aromatic hydrocarbons (PAHs), which were phenanthrene, anthracene, and fluoranthene, contaminated soil under visible irradiation. The morphology, phase, and particle size of the prepared nanocatalyst have been studied as a first mention in literature. The photoresponse of the TiO2 extends from UV region to the visible region was proved by the diffuse reflectance spectrophotometry (DRS). The surface area is greatly increased though the Fe-doped TiO2 compared with the bare TiO2. The pH value of the media showed the beneficial to PAH absorption on the Fe-doped TiO2 under the alkaline condition due to the surface catalyst possesses much negative charge, which is increase in percentage of PAH degradation. Based on GC-MS study, the mechanism of photoactivity of the selected PAHs involves hydroxylation, ring opening, and rearrangement reactions. The main intermediates of PAH photodegradation were found to be 9-octadecanoic acid, heptadecane, octadecane, cyclohexane (1-hexadecylheptadecyl), and 15-hydroxypentadecanoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号