首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO(2)) with H(2)0 and hydrogen chloride (HCl) on surfaces that simulate polar stratospheric clouds [ice and nitric acid (HNO(3))-ice and sulfuric acid] are studied at temperatures relevant to the Antarctic stratosphere. The reaction of ClONO(2) on ice and certain mixtures of HNO(3) and ice proceeded readily. The sticking coefficient of ClONO(2) on ice of 0.009 +/- 0.002 was observed. A reaction produced gas-phase hypochlorous acid (HOCl) and condensed-phase HNO(3); HOC1 underwent a secondary reaction on ice producing dichlorine monoxide (Cl(2)O). In addition to the reaction with H(2)0, ClONO(2) reacted with HCl on ice to form gas-phase chlorine (Cl(2)) and condensed-phase HNO(3.) Essentially all of the HCl in the bulk of the ice can react with ClONO(2) on the ice surface. The gaseous products of the above reactions, HOCl, Cl(2)0, and Cl(2), could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the formation of condensed-phase HNO(3) could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.  相似文献   

2.
The reactions of dinitrogen pentoxide (N(2)O(5)) with H(2)O and hydrochloric acid (HCl) were studied on ice surfaces in a Knudsen cell flow reactor. The N(2)O(5) reacted on ice at 185 K to form condensed-phase nitric acid (HNO(3)). This reaction may provide a sink for odd nitrogen (NO(x)) during the polar winter, a requirement in nearly all models of Antarctic ozone depletion. A lower limit to the sticking coefficient, gamma, for N(2)O(5) on ice is 1 x 10(-3). Moreover, N(2)O(5) reacted on HCl-ice surfaces at 185 K, with gamma greater than 3 x 10(-3). This reaction, which produced gaseous nitryl chloride (ClNO(2)) and condensed-phase HNO(3), proceeded until all of the HCl within the ice was depleted. The ClNO(2), which did not react or condense on ice at 185 K, can be readily photolyzed in the Antarctic spring to form atomic chlorine for catalytic ozone destruction cycles. The other photolysis product, gaseous nitrogen dioxide (NO(2)), may be important in the partitioning of NO(x) between gaseous and condensed phases in the Antarctic winter.  相似文献   

3.
Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 +/- 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to (1/2)(ClO + 2Cl(2)O(2)). These data indicate that the heterogeneous reaction HCl + ClONO(2) --> Cl(2) + HNO(3) on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO(2), not HCl.  相似文献   

4.
The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO(2)) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO(2) on the surface of ice with HCl in the mole fraction range from approximately 0.003 to 0.010 is in the range from approximately 0.05 to 0.1 for temperatures near 200 K. Chlorine (Cl(2)) is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO(3)), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO(3) and thus removes nitrogen dioxide (NO(2)) from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals. In the absence of HCl, ClONO(2) also reacts irreversibly with ice with a collision efficiency of approximately 0.02 at 200 K; the product hypochlorous acid (HOCI) is released to the gas phase on a time scale of minutes.  相似文献   

5.
Phase changes in stratospheric aerosols were studied by cooling a droplet of sulfuric acid (H(2)SO(4)) in the presence of nitric acid (HNO(3)) and water vapor. A sequence of solid phases was observed to form that followed Ostwald's rule for phase nucleation. For stratospheric partial pressures at temperatures between 193 and 195 kelvin, a metastable ternary H(2)SO(4)-HNO(3) hydrate, H(2)SO(4) . HNO(3) . 5H(2)O, formed in coexistence with binary H(2)SO(4) . kH(2)O hydrates (k = 2, 3, and 4) and then transformed to nitric acid dihydrate, HNO(3) . 2H(2)O, within a few hours. Metastable HNO(3) . 2H(2)O always formed before stable nitric acid trihydrate, HNO(3).3H(2)O, under stratospheric conditions and persisted for long periods. The formation of metastable phases provides a mechanism for differential particle growth and sedimentation of HNO(3) from the polar winter stratosphere.  相似文献   

6.
以苯酚为液化剂,对杉木Cunninghamia lanceolata树皮进行了液化实验。分析了反应温度、液比(苯酚与杉木树皮的质量比)、催化剂的种类和用量及液化时间对液化反应的影响。结果表明:与盐酸和磷酸相比,硫酸对杉木树皮的液化具有较好的催化效果;适宜液化工艺条件为:以72%(720 g.kg-1)硫酸为催化剂,用量为0.15 mL.g-1,液化时间为1.0 h,反应温度为150℃,液比为3,此时液化残渣率为9.97%。利用傅里叶红外光谱(FTIR)分析了杉木树皮及其液化产物的结构特征,结果显示杉木树皮的化学组分发生了明显的酚化反应。图6表1参20  相似文献   

7.
Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.  相似文献   

8.
T Koop  KS Carslaw 《Science (New York, N.Y.)》1996,272(5268):1638-1641
Polar stratospheric clouds (PSCs) are important for the chemical activation of chlorine compounds and subsequent ozone depletion. Solid PSCs can form on sulfuric acid tetrahydrate (SAT) (H2SO4·4H2O) nuclei, but recent laboratory experiments have shown that PSC nucleation on SAT is strongly hindered. A PSC formation mechanism is proposed in which SAT particles melt upon cooling in the presence of HNO3 to form liquid HNO3-H2SO4-H2O droplets 2 to 3 kelvin above the ice frost point. This mechanism offers a PSC formation temperature that is defined by the ambient conditions and sets a temperature limit below which PSCs should form.  相似文献   

9.
The collisional reaction probabilities of several atmospheric species on bulk sulfuric acid surfaces indicate that heterogeneous processes may be important in tropospheric chemistry.  相似文献   

10.
In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.  相似文献   

11.
采用微波消解法,通过不同的酸体系消解样品分别测定包含二氧化钛的总钛和不包含二氧化钛的内源性钛,总钛减去内源性钛即得到外源性二氧化钛,其中HNO3+HCl+HF+H2O2(5/1/1/3,V/V/V/V)酸体系(能溶解二氧化钛)用于测定总钛,HNO3+HCl+H2O2(5/1/3,V/V/V/V)酸体系(不能溶解二氧化钛)用于测定内源性钛。结果表明,食品中的二氧化钛加标回收率为94.6%-106.7%,RSD为1.0%-5.3%,二氧化钛方法最低检出限为0.22mg/kg。该检测方法克服了国家标准方法仅测定总钛的局限性,是定性、定量测定食品中二氧化钛较为实用的方法。  相似文献   

12.
预处过程中不同理化因子对竹质纤维素糖化的影响   总被引:2,自引:0,他引:2  
为研究不同理化因子对竹质纤维素糖化效果的影响,以竹质纤维素为原料,以酸解溶出的还原糖和总糖得率为考察指标,选取盐酸、硫酸、磷酸和硝酸4种稀酸在不同稀酸浓度、酸解温度、竹粉颗粒度和固液比条件下,对竹粉处理不同时间的单因素试验。结果表明:在竹粉颗粒度100目和固液比1∶15的条件下,用2%稀硫酸在温度121℃下处理25 m in后,酸解效果较好,还原糖和总糖得率分别在35%和50%以上。与较低温度下的长时间酸解相比,在较高温度下对竹粉进行较短时间的酸解处理能有效地提高酸解液中还原糖和总糖的得率。  相似文献   

13.
不同pH对光皮桦种子萌发及幼苗生长的影响   总被引:3,自引:0,他引:3  
以中性溶液(pH 7.0)为对照,研究不同酸碱度(pH为3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.5、8.0、8.5)溶液浸泡对光皮桦种子萌发的影响.结果表明:不同pH胁迫对光皮桦种子萌发的影响不同.酸性条件下,pH为3.0、3.5的酸溶液浸泡完全抑制了光皮桦种子的萌发,发芽率为零;pH≥4.0时,种子发芽率、发芽势、发芽指数、活力指数均与pH呈显著正相关,根长抑制指数、芽长抑制指数与pH呈显著负相关;pH为6.0时,不同酸溶液(硝酸、硫酸、盐酸)对光皮桦种子萌发的影响有一定差异,其抑制作用大小顺序为:硝酸>硫酸>盐酸;酸溶液胁迫还延缓了光皮桦种子的萌发进程.碱性条件下,pH为7.5 ~8.5的碱性溶液胁迫对光皮桦种子的萌发影响较小,其发芽率、发芽势、发芽指数、活力指数波动范围分别为48.33% ~ 56.67%、35.33%~38.33%、60.758 ~ 68.521、83.871~92.745;随着pH的增大,种子各项指标总体呈下降趋势.  相似文献   

14.
陈昱 《安徽农业科学》2012,(30):14797-14798,14803
[目的]对土壤中砷、铅、铬、镉、镍重金属元素检测前处理过程进行条件优化,确定最佳前处理条件。[方法]采用正交试验法确定前处理过程中H2O2、HF和HCl用量,并比较预消解温度,确定最佳预消解温度。[结果]确定样品加入5.0 ml浓HNO3、1.5 ml HF、1.0ml浓HCl后,置于赶酸仪,在100℃条件下预赶酸10 min,冷却后补加1.0 ml浓HNO3、1.5 ml H2O2的土壤前处理方法,RSD5%,回收率为95.0%~101.7%。[结论]该试验条件具有较好的重复性,准确性较高,适合土壤砷、铅、铬、镉、镍重金属元素的测定。  相似文献   

15.
酸性催化剂对木材苯酚液化能力的影响   总被引:36,自引:3,他引:33  
为了探讨酸性催化剂对木材 (杉木和三倍体毛白杨 )苯酚液化的影响 ,该研究采用磷酸 (85 % )、低浓硫酸(36 % )、盐酸 (37% )、草酸 (99 5 % ) 4种弱酸性无机酸 ,在不同温度下进行了木材的液化试验 .结果表明 ,磷酸和低浓硫酸是木材苯酚液化效果较好的催化剂 .在温度为 15 0℃、液化时间为 2h、液体比 (苯酚 木材 )为 4、催化剂含量为10 %的条件下 ,采用磷酸或低浓硫酸 ,可以分别使木材液化后的残渣率降至 3 2 %和 4 0 % .  相似文献   

16.
A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate ( approximately 43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10(-7) mole per cubic centimeter per second and Hg(II) turnover frequency of 10(-3) per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH(3)HgOSO(3)H, 1. Under the reaction conditions, 1 readily decomposes to CH(3)OSO(3)H and the reduced mercurous species, Hg(2)(2+) The catalytic cycle is completed by the reoxidation of Hg(2)(2+) with H(2)SO(4) to regenerate Hg(II) and byproducts SO(2) and H(2)O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.  相似文献   

17.
Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone.  相似文献   

18.
The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.  相似文献   

19.
Prinn RG 《Science (New York, N.Y.)》1973,182(4117):1132-1135
It is proposed that the visible cloud deck on Venus is composed of droplets of sulfuric acid. These are formed by the very rapid photooxidation of carbonyl sulfide in the upper atmosphere. The clouds are best described as an extensive haze since the predicted particulate scale height probably exceeds the gas scale height within the layer. The predicted mixing ratio for water is 10(-6) (lower limit), and for both carbonyl sulfide and sulfur dioxide it is 10(-7) (upper limit); these are in good agreement with observations. Gaps in the layer are not possible unless the planetary scale dynamics produce cloud turnover times of less than a few days. Under these conditions the water mixing ratio could approach 10(-4) and the formation of a thin hydrochloric acid haze at high altitude above the main cloud is possible.  相似文献   

20.
稻草秸秆硫酸水解研究   总被引:1,自引:0,他引:1  
[目的]优化稻草秸秆浓硫酸水解法的条件。[方法]在单因素试验的基础上,固定稻草秸秆粒度为20~40目,以液固比(V/W)、硫酸质量分数、反应温度和反应时间4个因素进行正交试验。[结果]4个因素对稻草秸秆水解率的影响程度为:硫酸质量分数〉液固比〉反应温度〉反应时间。稻草秸秆的最佳水解条件为:硫酸质量分数70%,液固比(V/W)12∶1,反应温度70℃,反应时间为3 h。在此条件下,稻草秸秆水解率达77%以上。[结论]该研究为综合开发利用稻草秸秆奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号