共查询到20条相似文献,搜索用时 0 毫秒
1.
《大连海洋大学学报》2022,(1)
采用Chan和Vese的C-V主动轮廓模型以及本文中改进的C-V主动轮廓模型对几类典型的海洋微藻图像进行了分割。当微藻图像的主要边界曲率变化较大,即主边界陡峭时,直接使用C-V主动轮廓模型难以获得微藻图像的边界。在改进的C-V主动轮廓模型中,通过人机交互绘制粗略的初始边界,并将其设定为初始零水平集,将符号函数引入到初始水平集中定义内外能量,再通过适当的参数调整进行图像边界的演化。将采用两种模型算法获取典型的海洋微藻图像边界的过程进行对比可知,对于带陡峭边界的微藻图像,采用C-V主动轮廓模型难以获得或以较慢速度获得图像边界,而采用改进的C-V主动轮廓模型不仅图像边界获取速度快,而且边界信息量大。实验结果验证了改进的C-V主动轮廓模型算法的有效性,为微藻图像的分割提供了新的技术手段。 相似文献
2.
树木图像分割是一种从图像中把树木与周围背景完整分离的技术,是计算机仿真学科在林业应用方面的核心内容,也是计算机视觉方向的研究热门,为林业应用提供一定的技术支持。根据树木图像含有分裂、合并、形成尖角等相对比较复杂形状的特点,首先对图像运用基于C-V模型水平集的计算,通过计算活动轮廓长度和差异量来判断迭代收敛的情况,待迭代稳定后对其进行形态学后处理操作,将某些过分割区的细密纹理和噪声剔除,从而得到全局最佳优化的图像分割效果。为彩色树木图像的分割提供一种更为有效的方法。 相似文献
3.
基于改进C-V模型的木材表面缺陷图像分割 总被引:1,自引:0,他引:1
木材表面缺陷会严重影响木材的质量、性能和使用价值,对木材表面缺陷分割检测有利于提高木材的利用率,节约现有木材资源,缓解森林资源短缺的压力。针对传统的C-V(Chan-Vese)模型算法不能分割灰度不均匀图像的缺点,本文采用C-V模型与形态学结合的方法与传统的C-V模型算法进行对比试验。与此同时,根据C-V模型和C-V模型结合形态学方法的不足之处,在C-V模型基础上,引入局部拟合函数和高斯核函数,提出了一种基于C-V模型的改进算法,能够有效地克服C-V模型的不足。通过对木材表面缺陷图像分别采用传统C-V模型算法、C-V模型与形态学结合的方法和改进的C-V模型算法进行多组针对单一目标的木材表面缺陷图像的对比试验。结果表明:C-V模型能够将虫眼和活节缺陷图像分割出来,但是对纹理干扰强烈的死节缺陷图像分割困难;运用C-V模型与形态学结合的方法,可以有效地消除分割结果中的细小空洞和噪声,但是仍无法抵抗死节缺陷图像中木材自身纹理的干扰,难以将死节缺陷完整地分割出来;改进的C-V模型算法对木材表面缺陷图像的分割能够减少迭代次数,缩短分割时间,使分割轮廓线更加光滑和完整。通过采用改进C-V模型算法对多目标木材表面缺陷图像进行试验,能够更好地验证改进算法的优越性、有效性和可行性。 相似文献
4.
针对羊体图像背景复杂、分割难以及不同光照条件干扰羊体图像的问题,采用一种基于YCbCr空间改进C-V主动轮廓模型的分割方法,对具有复杂背景的羊体图像分割进行研究。结果表明:1)根据羊体图像的颜色特点,对羊体图像进行从RGB空间到YCbCr空间的转换能克服拍摄环境中光照对羊体的影响;2)利用手动勾画羊体的粗略轮廓构造预处理水平集,对其内部、外部以及边界进行划分后可以演化羊体图像的轮廓。试验证明改进C-V模型能对复杂背景下的羊体图像进行准确分割,分割结果能够应用到后续羊体测量点的识别中。 相似文献
5.
依据植物图像中不同目标的区域特征,应用多水平集分割算法分割植物图像.该算法能够将植物的花朵、叶片以及背景有效地分割开.与基于聚类的多尺度Ncut算法的分割效果进行比较,多水平集方法在分割效果上优于多尺度Ncut算法. 相似文献
6.
数字图像处理中图像分割有着非常重要的地位,分割结果直接影响图像处理的效果。常用的图像分割算法几乎都是基于确定性方法的,但是在图像信息处理过程中存在着不确定性。因而,降低提取信息的不确定性的研究成为图像分割中重要的研究方向。采用云模型来描述论域空间中不确定的数据元素。实验表明,由于云模型能对概念的不确定性很好地表达和降低概念分层的不确定性,这使得图像分割中存在的不确定性问题能得到很好地、有效地处理。 相似文献
7.
基于遗传算法的骨髓细胞图像分割方法研究 总被引:2,自引:0,他引:2
设计了一种基于熵的遗传聚类分割算法.以像素的灰度值为特征向量进行编码,利用直方图熵法准则函数作为适应度函数,采用基于排名的选择操作,以一定的概率进行算术交叉和变异,并结合聚类分析设定种群的聚类中心对细胞图像进行遗传聚类分割.对于分割后获得的细胞核轮廓利用活动轮廓模型进行了优化,从而获得连续的细胞轮廓曲线. 相似文献
8.
提出了一种新型的多相活动轮廓模型,是无边活动轮廓模型的广义形式。该模型具有如下特点:(1)提出了背景填充技术,可以在检测目标内部弱边缘时去除阻碍检测的背景信息;(2)在单次二相水平集收敛的基础上,采用多次收敛方式实现了多相分割模型(n-1次收敛实现n相分割模型,n〉1);(3)介绍了一种提升算法,进一步增强了模型的计算稳定性。实验结果表明,该模型对弱边缘检测特别有效。 相似文献
9.
为解决木材细胞纤维图像分割中的某些图像分割不连续的现象,引入了基于形变模型(DeformableModels)的水平集(LevelSet)方法对木材细胞图像进行分割,并用Matlab实现了基于该形变模型的窄带(NarrowBand)快速算法。对针叶材和阔叶材的显微图片进行仿真试验表明,该方法适合于对具有分支、突触以及拓扑结构变化的木材细胞图像进行快速精确分割,不但具有全局优化的能力,而且可以检测出模糊或离散状边界,对噪声也有一定的鲁棒性。 相似文献
10.
为了更好地对板材表面的节子和虫眼进行快速有效的分割,对局部二值拟合(local binary fitting,LBF)模型进行了深入研究,从而提出一个改进的 LBF模型,即在LBF模型的基础上,添加一个新的水平集线性正则化项,与此同时引入一个以高斯函数为核函数的局部二值拟合能量。改进算法能够克服LBF模型的分割缺点,使得分割过程对初始轮廓的大小和位置不敏感,同时增强算法的抗噪性,能够分割出灰度不均匀的图像。经实验验证,该算法可以比较完整地提取出单一目标和多目标的板材节子和虫眼的图像,以及对应得出与缺陷图像相对应的水平集演化图像。图21表1参15 相似文献
11.
叶片的形态测量在苗木生长自动监测中具有重要意义,在形态测量前首先要将完整的叶片从背景中提取出来.针对彩色苗木叶片图像的特点研究了利用几何活动轮廓模型进行完整叶片的自动分割的方法.首先利用图像的全局信息和C-V模型进行初始分割,当曲线到达目标边界附近时,利用改进的基于图像局部信息的能量模型进行边界的精确定位.该方法将C-... 相似文献
12.
为解决自然条件下棉花叶片因其轮廓几何边缘长势不均匀所导致的叶片目标提取不精准问题,提出一种基于改进C-V模型的棉花病害叶部目标提取方法。在传统C-V模型的基础上,将长度惩罚项和符号距离函数的约束能量项引入能量模型中,以达到对演化曲线长度变化的约束目的,从而完成对整幅图像目标特征的提取。本研究算法先对待分割的图像设置初始曲线,并利用高斯滤波算子对待分割图像进行平滑滤波处理,然后根据图像全局灰度信息和局部二值匹配信息建立能量方程,根据其离散化形式,对水平集函数进行演化,并从中提取演化曲线,最后根据水平集函数演化过程所满足的终止条件,输出图像分割结果。按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。试验结果表明:本研究算法对于晴天、阴天和雨天图像中目标(棉花叶片)轮廓提取准确率分别达到82.23%、82.73%和84.60%。分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像目标特征轮廓实现准确提取。 相似文献
13.
在医学领域,黄斑厚度可以用来量化糖尿病黄斑水肿和年龄相关性黄斑变性等疾病,临床上通常使用光学相干断层扫描的影像技术来获取黄斑图像。但现有的黄斑图像分割方法运算速度较慢,阻碍了其临床使用。本文提出一种新的基于多分辨率及水平集的黄斑图像分割方法,首先使用高斯滤波对原始图像按行进行滤波,再运用多分辨率方法获取图像初始局部轮廓,最后使用水平集方法可以快速获取黄斑图像的中间轮廓,得到最终的图像分割结果。通过在311幅黄斑图像的仿真实验对比,本文方法在边缘检测结果和运算速度上比传统方法有很大改进。 相似文献
14.
柑橘表面缺陷的图像分割与识别是水果在收购与销售过程中的重要环节,对于提升水果的品质和经济效益有着重要意义。经典GAC模型算法虽然能够很好的分割平面缺陷,但无法准确的分割图像凹陷区域。以柑橘的虫伤、腐烂、炭疽、蓟马、溃疡5种常见缺陷图像作为研究对象,其中腐烂、炭疽为凹陷缺陷,对传统GAC模型算法进行理论研究并针对其不足提出改进方案。通过对比试验分析各参数对于试验结果的影响,并应用改进后的GAC模型算法对柑橘缺陷样本进行图像分割,分析改进后的GAC模型对柑橘表面5种缺陷的识别能力,验证改进GAC模型的可行性。 相似文献
15.
杂草与作物争夺肥料、阳光等养分,从而影响作物生长,快速有效地清除杂草危害对提高作物的产量和品质具有重要意义。传统的杂草防治方法常采取大面积喷洒除草剂等措施,无法满足智慧农业的精细化管理要求,精确、可靠的杂草检测是智能除草的关键。在卷积神经网络模型PANet的基础上进行改进,把原始特征提取网络ResNet替换为DenseNet-121,采用FPA模块提供像素级注意力信息,通过金字塔结构增加感受野。以无人机多光谱糖菜杂草图像为研究对象,分别构建近红外790 nm、红色690 nm和归一化植被指数NDVI的训练数据集进行网络训练。发现PANet的训练精度为97.38%,测试精度为93.41%;采用3通道(近红外790 nm+红色690 nm+NDVI)训练的模型F1值最高为0.872。结果表明,该方法可以实现无人机多光谱图像杂草的有效分割,可为农田杂草精确检测和农作物生长状况监测提供参考和借鉴。 相似文献
16.
为了克服基于对偶迭代的分割方法在要求达到较高精度的分割时收敛较慢的缺点, 提出了对二相位分片常数Mumford-Shah模型的一个子问题采用改进的Chambolle对偶迭代进行求解. 通过对Chambolle对偶迭代和一种修正对偶迭代分别进行局部傅立叶分析, 证明了所提出的算法的合理性. 实验结果表明: 对于two-cell图像, dot256图像, 当终止准则精度要求更高时, 提出的算法迭代步数少, 收敛更快. 相似文献
17.
提出了一种基于云的图像过渡区提取算法.该方法利用区域生长算法提取目标内部灰度同质性及相似性最高的区域作为云核,结合云发生器,对图像进行云化处理.通过相邻云之间的逻辑运算生成边界云,提取边界云的数字特征,利用边界云的熵来确定过渡区的两端极值.在此基础上,采用过渡区象素的直方图峰值对应灰度作为分割阈值并进行图像划分.试验结果表明,该算法在能取得较好分割效果. 相似文献
18.
针对目前草莓采摘机器人草莓图像分割运算量大、耗时多等问题,根据CIE-XYZ颜色模型及其色度图,提出了一种在RGB彩模型中进行草莓图像色调分割的方法。该方法无需彩色模型转换,时间复杂性能较Lab彩色模型下a通道阈值分割算法与BP神经网络分割算法优越。对该算法进一步改进后,只需加减运算,无需乘除运算。试验结果表明:该算法能很好地实现成熟草莓果实与图像背景的分离,并较好的保存草莓轮廓信息,分割效率>85%;进一步对分割后的图像进行形态学处理,如膨胀、腐蚀等,有效消除了孔洞现象。 相似文献
19.
20.
在结合贪婪算法的基础上,利用一种改进的梯度矢量流(GVF)算法,提出了一种对各种蔬果图像进行轮廓提取的新算法。试验表明,该方法在保持GVF模型原有特性的基础上大大提高了模型收敛的速度,且较好地限制了非目标边缘和噪声干扰的影响,能够满足果蔬采摘机器人对视觉系统的精度和实时性要求。 相似文献