首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.  相似文献   

3.
A 50-nucleotide untranslated region is shown to be present within the coding sequence of Escherichia coli bacteriophage T4 gene 60, which encodes one of the subunits for its type II DNA topoisomerase. This interruption is part of the transcribed messenger RNA and appears not to be removed before translation. Thus, the usual colinearity between messenger RNA and the encoded protein sequence apparently does not exist in this case. The interruption is bracketed by a direct repeat of five base pairs. A mechanism is proposed in which folding of the untranslated region brings together codons separated by the interruption so that the elongating ribosome may skip the 50 nucleotides during translation. The alternative possibility, that the protein is efficiently translated from a very minor and undetectable form of processed messenger RNA, seems unlikely, but has not been completely ruled out.  相似文献   

4.
Genetic recombination between rIl mutants of T4 bacteriophage grown in Escherichia coli can occur under conditions where DNA synthesis is strongly inhibited by 5-fluorodeoxyuridine. The small amount of DNA synthesized under these conditions cannot account for the observed frequency of recombinants. The major mechanism of recombination in this system is a process of breakage and rejoining.  相似文献   

5.
RNA polymerase IV directs silencing of endogenous DNA   总被引:1,自引:0,他引:1  
  相似文献   

6.
Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.  相似文献   

7.
The structure of a T7 RNA polymerase (T7 RNAP) initiation complex captured transcribing a trinucleotide of RNA from a 17-base pair promoter DNA containing a 5-nucleotide single-strand template extension was determined at a resolution of 2.4 angstroms. Binding of the upstream duplex portion of the promoter occurs in the same manner as that in the open promoter complex, but the single-stranded template is repositioned to place the +4 base at the catalytic active site. Thus, synthesis of RNA in the initiation phase leads to accumulation or "scrunching" of the template in the enclosed active site pocket of T7 RNAP. Only three base pairs of heteroduplex are formed before the RNA peels off the template.  相似文献   

8.
9.
10.
M D Been  T R Cech 《Science (New York, N.Y.)》1988,239(4846):1412-1416
A catalytic RNA (ribozyme) derived from an intervening sequence (IVS) RNA of Tetrahymena thermophila will catalyze an RNA polymerization reaction in which pentacytidylic acid (C5) is extended by the successive addition of mononucleotides derived from a guanylyl-(3',5')-nucleotide (GpN). Cytidines or uridines are added to C5 to generate chain lengths of 10 to 11 nucleotides, with longer products being generated at greatly reduced efficiency. The reaction is analogous to that catalyzed by a replicase with C5 acting as the primer, GpNs as the nucleoside triphosphates, and a sequence in the ribozyme providing a template. The demonstration that an RNA enzyme can catalyze net elongation of an RNA primer supports theories of prebiotic RNA self-replication.  相似文献   

11.
12.
13.
Specific inhibition of nuclear RNA polymerase II by alpha-amanitin   总被引:75,自引:0,他引:75  
alpha-Amanitin, a toxic substance from the mushroom Amanita phalloides, is a potent inhibitor of DNA-dependent RNA polymerase II (the nucleoplasmic form) from sea urchin, rat liver, and calf thymus. This compound exerts no effect on the activity of polymerase I (nucleolar form) or polymerase III (also nucleoplasmic). The inhibition is due to a specific interaction with polymerase II or with a complex of DNA and polymerase II.  相似文献   

14.
15.
A small RNA of Bacillus subtilis bacteriophage phi 29 is shown to have a novel and essential role in viral DNA packaging in vitro. This requirement for RNA in the encapsidation of viral DNA provides a new dimension of complexity to the attendant protein-DNA interactions. The RNA is a constituent of the viral precursor shell of the DNA-packaging machine but is not a component of the mature virion. Studies of the sequential interactions involving this RNA molecule are likely to provide new insight into the structural and possible catalytic roles of small RNA molecules. The phi 29 assembly in extracts and phi 29 DNA packaging in the defined in vitro system were strongly inhibited by treatment with the ribonucleases A or T1. However, phage assembly occurred normally in the presence of ribonuclease A that had been treated with a ribonuclease inhibitor. An RNA of approximately 120 nucleotides co-purified with the phi 29 precursor protein shell (prohead), and this particle was the target of ribonuclease action. Removal of RNA from the prohead by ribonuclease rendered it inactive for DNA packaging. By RNA-DNA hybridization analysis, the RNA was shown to originate from a viral DNA segment very near the left end of the genome, the end packaged first during in vitro assembly.  相似文献   

16.
17.
18.
A pair of frame shift mutations in the lysozyme gene of bacteriophage T4 results in the substitution of a glutamyl-tyrosyl sequence for the asparagine residue that is the penultimate amino-terminal amino acid in the lysozyme of the wild-type strain. One of the mutations has been identified as the insertion of two bases, the other as the insertion of a single base.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号