首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical, and biological properties. A greenhouse experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient-use efficiency of 14 tropical cover crops. The P levels tested were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil. The cover crops tested were Crotalaria breviflora, Crotalaria breviflora, Crotalaria spectabilis Roth, Crotalaria ochroleuca G. Don, Crotalaria juncea L., Crotalaria mucronata, Calapogonium mucunoides, Pueraria phaseoloides Roxb., Pueraria phaseoloides Roxb., Cajanus cajan L. Millspaugh, Dolichos lablab L., Mucuna deeringiana (Bort) Merr., Mucuna cinereum L., and Canavalia ensiformis L. DC. Agronomic efficiency (shoot dry weight per unit P applied), physiological efficiency (shoot dry weight per unit of nutrient uptake), and apparent recovery efficiency (nutrient uptake in the shoot per unit nutrient applied) were significantly varied among cover crops. Agronomic efficiency decreased with increasing P levels. Overall, physiological efficiency of nutrient uptake was in the order of P > sulfur (S) > magnesium (Mg) > calcium (Ca) > potassium (K) > nitrogen (N). Similarly, apparent recovery efficiency was in the order of N > K > Ca > Mg > P > S. Different recovery efficiency in cover crops can be useful in selecting cover crops with high recovery efficiency, which may be beneficial to succeeding crops in the cropping systems. The P × cover crops interactions were significant for soil extractable Ca2+, P, cation exchange capacity (CEC), Ca saturation, Ca/K ratio, and K/Mg ratio, indicating that cover crops change these soil property differently under different P levels. Thus, cover crops selection for different P levels is an important strategy for using cover crops in cropping systems in Brazilian Oxisols. Optimal values of soil pH, soil Ca and Mg contents, hydrogen (H) + aluminum (Al), P, CEC, base saturation, Ca saturation, Mg saturation, and K saturation were established for tropical cover crops grown on an Oxisol.  相似文献   

2.
Abstract

This work aimed to evaluate the nitrogen transfer, the yield and the nutrient contents of organic cherry tomatoes intercropped with legumes in two successive years. The randomized block experimental design was used with eight treatments and five replicates, as follows: two controls with single cherry tomato crop (with and without corn straw cover); cherry tomato intercropped with jack bean (Canavalia ensiformis DC); white lupine (Lupinus albus L.); sunn hemp (Crotalaria juncea L.); velvet bean-dwarf [(Mucuna deeringiana (Bort) Merrill)]; mung bean (Vigna radiata (L.) Wilczek), and cowpea (Vigna unguiculata (L.) Walp). The number of total fruits, the weight of total fruit and an average weight of the total fruit in the first year was 25%, 33% and 13% higher than the second-year, respectively. The lower N-content of cherry tomato leaves in the treatment with mung bean can be reflected of lower %N transfer of cherry tomato leaves in the same treatment compared to treatment with cowpea bean. The N-content and %N transfer of cherry tomato leaves was 50 and 42% higher in year 1 than in year 2, successively. Nevertheless, in general, the legumes used in this study contributed equally in the N transfer to the cherry tomato plants. The P, K, Mg, Ca, Cu, Mn, Fe and Zn content in the leaf and shoot were no difference between the treatments. However, the Mg, Ca, Cu, Fe, Mn and Zn content of the leaf were higher in year 2 than year 1.  相似文献   

3.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   

4.
To quantify the contribution of biological nitrogen fixation (BNF) to legume crops using the 15N natural abundance technique, it is necessary to determine the 15N abundance of the N derived from BNF—the B value. In this study, we used a technique to determine B whereby both legume and non-N2-fixing reference plants were grown under the same conditions in two similar soils, one artificially labelled with 15N, and the other not. The proportion of N derived from BNF (%Ndfa) was determined from the plants grown in the 15N-labelled soil and it was assumed that the %Ndfa values of the legumes grown in the two soils were the same, hence the B value of the legumes could be calculated. The legumes used were velvet bean (Mucuna pruriens), sunnhemp (Crotalaria juncea), groundnut (Arachis hypogaea) and soybean (Glycine max) inoculated, or not, with different strains of rhizobium. The values of %Ndfa were all over 89%, and all the legumes grown in unlabelled soil showed negative δ15N values even though the plant-available N in this soil was found to be approximately +6.0‰. The B values for the shoot tissue (Bs) were calculated and ranged from approximately −1.4‰ for inoculated sunnhemp and groundnut to −2.4 and −4.5‰ for soybean inoculated with Bradyrhizobium japonicum strain CPAC 7 and Bradyrhizobium elkanii strain 29W, respectively. The B (Bwp) values for the whole plants including roots, nodules and the original seed N were still significantly different between the soybean plants inoculated with CPAC 7 (−1.33‰) and 29W (−2.25‰). In a parallel experiment conducted in monoxenic culture using the same soybean variety and Bradyrhizobium strains, the plants accumulated less N from BNF and the values were less negative, but still significantly different for soybean inoculated with the two different Bradyrhizobium strains. The results suggest that the technique utilized in this study to determine B with legume plants grown in soil in the open air, yields B values that are more appropriate for use under field conditions.  相似文献   

5.
ABSTRACT

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea L., cv ‘Tropic Sun’), cowpea (Vigna unguiculata L. Walp, cv ‘Iron clay’), velvetbean (Mucuna deeringiana (Bort) Merr.), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf) vs. a fallow (bare soil). The tomato crop was irrigated at four different rates, i.e., irrigation initiated only when the water tension had reached ?5, ?10, ?20, or ?30 kPa, respectively. The results showed that sorghum sudangrass, cowpea, sunn hemp, and velvetbean increased microbial biomass C by 68.9%, 89.8%, 116.8%, and 137.7%, and microbial N by 58.3%, 100.0%, 297.3%, and 261.3%, respectively. A legume cover crop, cowpea, had no statistically significant greater effect on soil microbial C and N than the non-legume cover crop, sorghum sudangrass. The tropical legumes, velvetbean and sunn hemp, increased the microbial biomass N markedly. However, the various irrigation rates did not cause significant changes in either microbial N or microbial C. Soil microbial biomass was strongly related to the N concentration and/or the inverse of the C:N ratio of the cover crops and in the soil. Tomato plant biomass and tomato fruit yields correlated well with the level of soil microbial N and inversely with the soil C:N ratio. These results suggest that cover crops increase soil microbiological biomass through the decomposition of organic C. Legumes are more effective than non-legumes, because they contain larger quantities of N and lower C:N ratios than non-legumes.  相似文献   

6.
Purpose

Soil physico-chemical properties, biomass production, and root density are considered key factors indicating soil health in an agroecosystem. The soil physico-chemical changes and plant growth (e.g., shoot biomass production and root density) in a 6-year cultivation of plant species used as green manure in a sandy soil from Tropical ecosystem, North-eastern Brazil, were investigated between July and December 2019.

Material and methods

We characterized soil physical and chemical properties, shoot biomass production, and root density under ten plant species used as green manure: Brachiaria decumbens Stapf. cv. Basilisk, Canavalia ensiformis (L.) DC, Crotalaria juncea L., Crotalaria ochroleuca G. Don, Crotalaria spectabilis Roth, Lablab purpureus (L.) Sweet, Mucuna pruriens (L.) DC, Neonotonia wightii (Wight & Arn.) J.A. Lackey, Pennisetum glaucum L., and Stilozobium aterrimum Piper and Tracy.

Results and discussion

The highest values of soil pH, exchangeable cations, CEC, and soil available water capacity were found on the plots where Poaceae plants were cultivated, whereas for H++Al3+, C.E.C., soil available water, and soil available water capacity were found on the plots where Fabaceae plants were cultivated. On the plots where C. ensiformis and N. wightii were cultivated, we found the highest shoot dry biomass and root density, respectively. The results highlight the importance to consider plant species from both Poaceae and Fabaceae family used as green manure as soil conditioner (by promoting soil fertility, nutrient cycling, and hydraulic properties into plant root zone), and thus creating a positive plant-soil feedback.

Conclusions

Our findings suggest that (1) a consecutive green manure practice without any input of fertilizers after 6 years changed positively both soil physical and chemical properties, and improve plant growth (e.g., shoot dry biomass and root density) in tropical savanna climate conditions; and (2) by altering soil fertility, both Poaceae and Fabaceae plants used as green manure may create a sustainable cycle into the soil profile thus promoting soil health.

  相似文献   

7.
Legumes as dry season fallow in upland rice-based systems of West Africa   总被引:4,自引:0,他引:4  
Declining fallow length in traditional upland rice-based cropping systems in West Africa results in a significant yield reduction due mainly to increased weed pressure and declining soil fertility. Promising cropping system alternatives include the use of weed-suppressing legumes as short duration fallows. N accumulation, N derived from the atmosphere (Ndfa), weed suppression, and the effects on rice yield were evaluated in 50 legumes, grown at four sites in Côte d'Ivoire with contrasting climate, soils, and rice production systems. The sites were located in the derived and the Guinea savanna and in the bimodal and the monomodal rainfall forest zones. Legume and weed biomass during the fallow were determined at bimonthly intervals. Percent Ndfa by biological N fixation was determined by 15N natural abundance. Fallow vegetation was cleared and rice seeded according to the practice of local farmers and the cropping calendar. Weed biomass and species composition were monitored at monthly intervals. Legume fallows appear to offer the potential to sustain rice yields under intensified cropping. Biomass was in most instances significantly greater in the legume fallow than in the "weedy" fallow control, and several legume species suppressed weed growth. N accumulation by legumes varied between 1–270?kg N ha–1 with 30–90%?Ndfa. Across sites, Mucuna spp., Canavalia spp., and Stylosanthes guianensis showed consistently high N accumulation. Grain yields of rice which had been preceded by a legume fallow were on average 0.2?Mg ha–1 or about 30% greater than that preceded by a natural weedy fallow control. At the savanna sites where fallow vegetation was incorporated, Mucuna spp. and Canavalia ensiformis significantly increased rice yield. In the bimodal forest zone, the highest rice yield and lowest weed biomass were obtained with Crotalaria anagyroides. In general, the effects of legume fallows on rice yield were most significant in environments with favourable soil and hydrological conditions.  相似文献   

8.
The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field‐evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P‐use efficiency were similar for both P sources. In the field, 1‐year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha?1, more than 180% that of 2‐year continuous unfertilized rice (cv. ‘WAB 56‐50’). Among continuous rice plots, ‘NERICA 2’ (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha?1), suggesting that ‘NERICA 2’ might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock‐P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation.  相似文献   

9.
Nitrogen fixing bacteria play a key role in the growth and persistence of effective microbial communities in the soil by supplying N through biological nitrogen fixation (BNF). In the long run, chemical inputs, particularly N fertilisers are known to adversely affect N2 fixers and hence maintenance of soil fertility and crop productivity. This study examined the effect of developed microbial biofilms with N2 fixers on restoration of soils deteriorated by conventional agricultural practices in tea cultivation. Just reducing recommended chemical fertiliser use by 50% significantly increased soil microbial biomass and BNF, and decreased soil NO3 and pest infestation. The lower chemical fertiliser addition coupled with the biofilm-based biofertilisers known as biofilmed biofertilisers (BFBFs) further increased BNF significantly. The combined application significantly increased soil organic C by ca. 20%, and reduced leaf transpiration by ca. 40%. It also supported plant growth, rhizoremediation and soil moisture conservation in comparison to the 100% chemical fertilisation. Those improved performances were observed to be proportional to the increased density of soil bacteria, and have several agronomic and environmental implications. It is apparent from this study that replenishing the depleted soil microbial communities by applying such biofertilisers is likely to be beneficial in agroecosystems with chemical N fertiliser use, if they are to be sustained for crop production.  相似文献   

10.
The aim of this study was to determine whether by applying biochar, it is possible to augment the beneficial effects of legume–crop rotation systems on soil fertility and crop performance. Repeated experiments were established in 2012 and 2013 in South-western Benin using a split-split plot design. Two legumes, Mucuna pruriens (mucuna) and Vigna unguiculata (cowpea), were planted for 42 days on biochar-amended and unamended plots and subsequently cut and applied as mulch 5 days before planting rice. Rice plants were either fertilized or not using a fertilizer rate of 60, 30, and 30 kg ha?1 of N, P2O5, and K2O, respectively. The results showed that the application of legume green manures and fertilizer, either singly or in combination, improved soil nutrient availability, CEC, shoot yield, and grain yield of rice on both biochar-amended and unamended plots. However, the effect was significantly (p < 0.05) greater on biochar-amended plots. The mean grain yield for all cropping seasons was 1.8 t ha?1 for biochar-amended plots and 1.3 t ha?1 for unamended plots. The greater grain yield of rice on biochar-amended plots was associated with improved soil fertility and increased N uptake.  相似文献   

11.
ABSTRACT

The effects of plant age at the time of mowing on sunn hemp (Crotalaria juncea L.) tissue decomposition, nitrogen (N) release, and fiber content in Krome very gravelly loam were assessed. Combined leaf and stem tissue from 42-, 77- or 112-day-old sunn hemp plants was placed in mesh bags and buried below the soil surface in the field. Bags were removed bi-weekly and dry weights, N concentration, acid detergent fiber (ADF) and neutral detergent fiber (NDF) concentrations in buried sunn hemp tissues were determined. There was a rapid decrease plant tissue dry weight during the first 14 days after tissue was buried, followed by a slow gradual decrease. The amount N per hectare was much lower for 42-day-old than 112-day-old sunn hemp. Tissue of the youngest plants decomposed the quickest. Forty two-day-old tissue had a higher N concentration, N mineralization rate, and lower NDF and ADF than 77- or 112-day-old tissue. Mowing and soil incorporation of a 42-day-old instead of a 77- to 112-day-old sunn hemp cover crop prior to planting a cash crop can be beneficial for a fast-growing cash crop planted soon after soil incorporation of the cover crop.  相似文献   

12.
Atmospheric biological nitrogen fixation (BNF) by cowpea (Vigna unguiculata) and groundnut (Arachis hypogea) was evaluated using a 2-year (2000–2001) experiment with different fertilizer treatments. The 15N isotopic dilution method with a nonfixing cowpea as test reference crop was used. The effects of the two legumes on soil N availability and succeeding sorghum (Sorghum bicolor) yields were measured. Groundnut was found to fix 8 to 23 kg N ha-1 and the percentage of N derived from the atmosphere varied from 27 to 34%. Cowpea fixed 50 to 115 kg N ha−1 and the percentage of N derived from the atmosphere varied from 52 to 56%. Compared to mineral NPK fertilizer alone, legumes fixed more N from the atmosphere when dolomite or manure was associated with mineral fertilizers. Compared to soluble phosphate, phosphate rock increased BNF by cowpea. Significant correlation (p<0.05, R 2=0.94) was observed between total N yields of legumes and total N derived from the atmosphere. Compared to monocropping of sorghum, the soils of cowpea–sorghum and groundnut–sorghum rotations increased soil mineral N from 15 and 22 kg N ha−1, respectively. Cowpea–sorghum and groundnut–sorghum rotations doubled N uptake and increased succeeding sorghum yields by 290 and 310%, respectively. Results suggested that, despite their ability to fix atmospheric nitrogen, N containing fertilizers (NPK) are recommended for the two legumes. The applications of NPK associated with dolomite or cattle manure or NK fertilizer associated with phosphate rock were the better recommendations that improved BNF, legumes, and succeeding sorghum yields.  相似文献   

13.
The effect on soil fertility of applying particular organic resources to a humic Nitisol in the central highlands of Kenya was studied. The organic resources (Calliandra calothyrsus, Leucaena trichandra, Tithonia diversifolia, Mucuna pruriens, Crotalaria ochroleuca and cattle manure) were either applied solely or along with inorganic fertilizer in a cropping trial using maize as the experimental crop. After 4 years of continuous cultivation and manuring, soil fertility effects varied among treatments. Cattle manure proved to be the most effective and improved soil fertility by increasing pH, cations (Ca, K and Mg), and C. Calliandra, Leucaena, Tithonia and herbaceous legumes generally reduced soil pH, C and N but increased Ca, K and Mg. Cattle manure is therefore an important resource for maintaining soil organic matter (SOM) in the area and in other similar areas with arable‐livestock systems. Reduction of soil C and N by the high quality organic materials suggests that their role in maintaining SOM in the long‐term is limited in this area. A sound nutrient management system should strive to make a balance between maximizing crop production and sustaining soil quality.  相似文献   

14.
This study aimed at identifying the proper developmental stage for the cutting of cover crops with high nutrients content in the shoots of plants to be used as green manure on crop rotation in the no-tillage (NT) system. Crotalaria juncea, Cajanus cajan, Mucuna aterrima, and Sorghum bicolor were collected at five different vegetative stages for assessing of fresh weight yield (DWY) and dry weight yield (DWY), as well as determining the carbon (C)/nitrogen (N) ratio and the contents of nutrients in the shoots of plants. The experiment was performed on a completely randomized design, with five replicates. Except for the nutrients contents in S. bicolor, for the assessed legumes the DWY, FWY, C/N ratio, nutrient concentration and nutrient accumulation in the shoots have increased with the development of plants. Therefore, it can be inferred that grasses studied will provide greater soil cover, while the legumes will provide a greater nutrient cycling.  相似文献   

15.
Biological N2 fixation (BNF) by associative diazotrophic bacteria is a spontaneous process where soil N is limited and adequate C sources are available. Yet the ability of these bacteria to contribute to yields in crops is only partly a result of BNF. A range of diazotrophic plant growth-promoting rhizobacteria participate in interactions with C3 and C4 crop plants (e.g. rice, wheat, maize, sugarcane and cotton), significantly increasing their vegetative growth and grain yield. We review the potential of these bacteria to contribute to yield increases in a range of field crops and outline possible strategies to obtain such yield increases more reliably. The mechanisms involved have a significant plant growth-promoting potential, retaining more soil organic-N and other nutrients in the plant-soil system, thus reducing the need for fertiliser N and P. Economic and environmental benefits can include increased income from high yields, reduced fertiliser costs and reduced emission of the greenhouse gas, N2O (with more than 300 times the global warming effect of CO2), as well as reduced leaching of NO3-N to ground water. Obtaining maximum benefits on farms from diazotrophic, plant growth promoting biofertilisers will require a systematic strategy designed to fully utilise all these beneficial factors, allowing crop yields to be maintained or even increased while fertiliser applications are reduced.  相似文献   

16.
ABSTRACT

Experiments were carried out with the objectives to reduce the yield gap of plant and subsequent ratoon crops, evaluate juice quality, as well as soil properties. A 3-year field experiment was utilized to assess the use of organic materials and inorganic fertilizers on plant and subsequent ratoon crops. The organic materials included press mud, farmyard manure (FYM), and green manure (GM) of Sunhemp (Crotalaria juncea); the fertilizers were urea, triple superphosphate (TSP), muriate of potash (MOP), gypsum, and zinc sulphate. Farm yard manure was applied at a rate of 15 t ha?1 accompanied with a chemical fertilizer (N178P53K54S26Zn2.6kg ha?1), which produced yield of 108.4, 96.8, and 73.5 t ha?1 in plant cane, first, and second ratoon crops, respectively. Cane yields in the first were recorded in plant cane first and second ratoon crops, respectively. Cane yields in the first and second ratoon crops were 89.3 and 67.8% of plant crop, respectively. Juice quality parameters viz., Brix, pol and purity percent progressively increased in ratoons crops as compared to corresponding plant cane. The organic carbon, total N, and available P, K, &; S contents of soils increased slightly due to incorporation of organic materials. The result of the study revealed that 25% reduction of inorganic fertilizer with FYM or press mud at 15 t ha?1 in plant cane and addition of 50% more N with same amount of fertilizer suggested for plant cane showed better yield and improved juice quality in first and second ratoon crops of sugarcane.  相似文献   

17.

Purpose

Organo-mineral biochar fertiliser has the potential to replace conventional biochar and organic fertiliser to improve soil quality and increase plant photosynthesis. This study explored mechanisms involved in nitrogen (N) cycling in both soil and ginger plants (Zingiber officinale: Zingiberaceae) following different treatments including organic fertiliser, commercial bamboo biochar fertiliser, and organo-mineral biochar fertiliser.

Materials and methods

Soil received four treatments including (1) commercial organic fertiliser (5 t ha?1) as the control, (2) commercial bamboo biochar fertiliser (5 t ha?1), (3) organo-mineral biochar fertiliser at a low rate (3 t ha?1), and (4) organo-mineral biochar fertiliser at a high rate (7.5 t ha?1). C and N fractions of soil and plant, and gas exchange measurements were analysed.

Results and discussion

Initially, organo-mineral biochar fertiliser applied at the low rate increased leaf N. Organo-mineral biochar fertiliser applied at the high rate significantly increased N use efficiency (NUE) of the aboveground biomass compared with other treatments and improved photosynthesis compared with the control. There was N fractionation during plant N uptake and assimilation since the 15N enrichment between the root, leaf, and stem were significantly different from zero; however, treatments did not affect this N fractionation.

Conclusions

Organo-mineral biochar fertiliser has agronomic advantages over inorganic and raw organic (manure-based) N fertiliser because it allows farmer to put high concentrations of nutrients into soil without restricting N availability, N uptake, and plant photosynthesis. We recommend applying the low rate of organo-mineral biochar fertiliser as a substitute for commercial organic fertiliser.
  相似文献   

18.
Winter legumes can serve dual purposes in no-tillage cropping systems. They can provide a no-tillage mulch, and supply a considerable quantity of N for thesummer crops. Cotton (Gossypium hirsutum L.) was no-tillage planted into crimson clover (Trifolium incarnatum L.), common vetch (Vicia sativa L.), and fallowed soil for two years to determine the effects of winter legume mulches on growth, yield, and N fertilizer requirements. The legumes were allowed to mature and reseed prior to planting cotton. The winter legumes produced no measurable changes in soil organic matter, N, or bulk density, but water infiltration was more rapid in the legume plots than in the fallowed soil. In the fallow system, 34 kg ha?1 N fertilizer was required for near maximum yields. In the clover plots, yields without N fertilizer were higher than when N (34 and 68 kg ha?1) was applied. In the vetch plots, cotton yields were highest without N fertilizer the first year, but yields were increased with 34 kg ha?1 N the second year because of a poor vetch seed crop and a subsequently poor legume stand. In the clover plots, a 20–30% cotton seedling mortality occurred in one year, but this stand reduction apparently did not affect cotton yields. Winter legume mulches can provide the N needs for no-tillage cotton without causing an excessive and detrimental quantity of N in sandy soils naturally low in soil N (0.04%). Unless the reseeding legume systems are maintained for at least 3 years, the legumes do not, however, provide an economical N source for cotton when N fertilizer requirementsare low (34 kg ha?1 in this study). A possible disadvantage of the system for reseeding legumes is that cotton planting is delayed 4–6 weeks beyond the normal planting date, which can reduce yields in some years.  相似文献   

19.
We studied N mineralization of legume green manures under laboratory and field conditions, and the effects of field green-manuring on the microbiological properties of an acid Alfisol soil. No significant differences were found in the mineralization rates of Sesbania (Sesbania cannabina), sunnhemp (Crotalaria juncea), and cowpea (Vigna unguiculata) green manure. Mineralization was higher in field-capacity moist soil than water-saturated soil. The decomposition of sunnhemp under field wetland conditions, in the absence of a rice crop, was a rapid as it was under in vitro conditions. The decomposition released considerable amounts of mineral N and the level of NH 4 + -N was significantly higher than NO 3 -N. Significant improvements were observed in the microbial biomass, dehydrogenase activity, and bacterial populations in the field soil green-manured for rice for 3 years, compared with fertilized soil.  相似文献   

20.
Over half of the 21 Mha of soybean planted in Brazil is now transgenic glyphosate-resistant (GMRR). A field experiment was carried out to investigate whether the application of glyphosate or imazethapyr to the GMRR variety reduced the input of N2 fixation (BNF). No effects on yield, total N accumulation, nodulation and BNF (δ15N) could be assigned to the genetic modification of the plant. Imazethapyr reduced soybean yield but had no significant effect on BNF. Even though yields were not affected by glyphosate, the significant reduction of nodule mass and BNF to the GMRR suggests that the use of this herbicide could lead to an increased dependence on soil N and consequently an eventual decrease of SOM reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号