首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen field isolates of Botrytis cinerea were compared by determining their radial growth on synthetic media containing various amounts of 21 antifungal compounds. Twelve of these compounds were fungicides that are recommended for the control of Botrytis infections. There were marked differences between the isolates in their sensitivity to the compounds. Individual isolates displayed high levels of resistance to some of the fungicides, including benomyl, carbendazim, iprodione, thiabendazole, thiophanate-methyl, vinclozolin and zineb. The most potent growth inhibitors were benomyl and carbendazim (ED95 values for most isolates <0.1 μg fungicide ml?1 media), dichlofluanid, iprodione, nystatin, thiabendazole, thiophanatemethyl and vinclozolin (ED95 values for most isolates < 1.0 μg ml?1), and captan, chlorothalonil, dicloran and thiram (ED95 values for most isolates < 6.0 μg ml?1). Zineb was much less potent than the other recommended anti-Botrytis fungicides; it was no more effective than carboxin, dinocap and mancozeb (ED95 values for most isolates > 25 μg ml?1).  相似文献   

2.
The effects of several herbicides used in pome fruit orchards on the germination of spores and growth of mycelia of Botrytis cinerea, Mucor piriformis and Penicillium expansum in vitro and the survival of propagules of these fungi in soil were studied. Diuron in agar at 4–128 μg ml?1 reduced germination of spores of B. cinerea and M. piriformis, and 2,4-D and paraquat at 32 μg ml?1 similarly affected B. cinerea and P. expansum. Several herbicides at 128 μg ml?1 in agar reduced growth of B. cinerea and M. piriformis but were ineffective against P. expansum. Propagule survival levels of the three fungi generally were lower in both autoclaved and non-autoclaved soil amended with herbicides than in non-amended soil. This effect was greatest in non-autoclaved soil, suggesting involvement of microbial antagonists. The most effective herbicides for reduction of fungal propagules in soil were 2,4-D, diuron, and paraquat.  相似文献   

3.
A bioassay procedure for quantitative determination of sulphonylurea herbicides is described. Turnips (Brassica rapa) were found very suitable as test plants and gave results within 10 days. Six sulphonylurea compounds were investigated for their activity in three widely differing soils. The potential availability to plants was calculated from the dose-response curves of vermiculite (non-sorptive substrate) and the corresponding ED50-values of the soils. The dose-response relationship (logistic curve) was described by a computer model by a position parameter, the slope of the curve and the minimum and maximum fresh weights of plants. The limit of quantitative detection in the range of ED30 in vermiculite was 0·06 μg 1?1 for sulfometuron and 1·03 μg 1?1 for DPX-L5300, methy12-([4-methoxy-6-methyl-1,3,5-triazin-2-yl (methyl)carbamoyl]-sulphamoyl) benzoate. Results with turnips showed that sulfometuron was the most active compound in all substrates (ED50 in vermiculite 0·12 μg 1?1) followed by chlorsulfuron, metsulfuron-methyl, triasulfuron, DPX-M6316, methyl 3-([(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbamoyl]-aminosulphaphamoyl)-2-thiophenecarboxylate, and DPX-L5300 which had ED50 or 1·98 μg 1?1, The Horotiu sandy loam soil showed the highest ED50-values and the lowest plant availability for all compounds compared to the other soils. Probit and logistic evaluation methods for deriving dose-response relationships are compared and their applicability is discussed.  相似文献   

4.
Eleven sterol biosynthesis-inhibiting fungicides were compared in experiments to determine the physico-chemical properties required for most effective control of take-all by soil treatment. All were active in agar culture against an isolate of the pathogen which causes take-all, Gaeumannomyces grammis var. tritici, with prochloraz being the most toxic (EC50 0.02 μg ml?1) and PP 969 the least (EC50 0.44 μg ml?1). Penconazole and PP 969 had vapour activity against the fungus in further bioassays on agar. In soil in pots, the most strongly lipophilic compound, buthiobate, was ineffective against take-all in wheat; triadimenol was most effective and, like flutriafol, nuarimol and PP 969, retained some effectiveness after 12 weeks in soil. PP 969, unlike penconazole or nuarimol, was effective in soil treated unevenly by mixing the fungicides in layers. PP 969 is relatively polar, and it is suggested that this property, allowing redistribution in soil water rather than as vapour, outweighed its poor intrinsic toxicity. The ideal soil-treatment fungicide should therefore be polar and also have good intrinsic activity and moderate persistence. None of the compounds tested had all these properties.  相似文献   

5.
The antibiotic nucleoside tubercidin produced by Streptomyces viola-ceoniger was evaluated for in-vivo efficacy and in-vitro activity against Phytophthora capsici, Magnaporthe grisea and Colletotrichum gloeosporioides. Tubercidin was more effective against P. capsici and M. grisea than against C. gloeosporioides in inhibiting mycelial growth. The bioassay on TLC plates was the most sensitive method and allowed the evaluation of antifungal activity of tubercidin even at a low concentration of 0.1 μgml?1. As compared to the systemic fungicide metalaxyl, tubercidin was similar or somewhat higher in inhibition of mycelial growth of P. capsici. When applied to pepper stems, tubercidin was equally as effective as metalaxyl in the control of phytophthora blight in pepper plants, irrespective of application time and concentration. The treatment with 1000 μg ml?1 tubercidin induced phytotoxicity in pepper plants. No control efficacy of phytophtora blight was observed in pepper plants supplied with a soil drench of tubercidin. Treatment with tubercidin at 500 μg ml?1 completely protected pepper plants at first branch stage from phytophthora blight until four days after application. The control efficacy of tubercidin drastically declined seven days after application.  相似文献   

6.
Fenpropimorph was found to be highly active against Penicillium italicum (EC50 0.01/μg ml?1). Conidia of P. italicum, treated with low concentrations of fenpropimorph, swelled in size and showed distorted germ tubes. During the initial stages of mycelial growth, fenpropimorph had little or no effect on the dry weight increase, which became strongly inhibited within 24 h after addition of the toxicant (0.05, 0.1 and 0.2 μg ml?1). Irregular deposition of β–1,3 and β–1, 4 polysaccharides, probably chitin, was observed after treatment with fenpropimorph or imazalil. Fenpropimorph (0.05 and 0.2 μ ml?1) caused the accumulation of a major demethyl-sterol that was different from ergosterol. It was identified as ergosta-8, 14, 24(28)-trien-3β-ol by mass, infrared, ultraviolet and proton nuclear magnetic resonance, spectrometric procedures. At both concentrations, the accumulation was already detected after incubation for 2 h. In contrast, imazalil (0.1 μg ml?1) caused the accumulation of several methyl- and dimethyl-sterols which were tentatively identified as eburicol (24-methylene-24, 25-dihydrolanosterol), 4, 14α-dimethylergosta-8, 24(28)-dien-3-one, 14α-methylergosta-8, 24(28)-dien-3-one and obtusifoliol (4, 14α-dimethylergosta-8, 24(28)-dien-3α-ol). The accumulation of ergosta-8, 14,24(28)-trien-3β-ol indicates inhibition of the Δ14-reductase in P. italicum in a similar manner to that found previously in Ustilago maydis.  相似文献   

7.
Boron is a microelement required for normal growth and development of plants but its positive effect is restricted to a narrow range of concentrations. The gradual increase in use of recycled water, which contains high concentrations of boron for irrigation, has already raised the level of boron in soils and plants in southern Israel. This research was conducted to examine the direct effects of sub‐phytotoxic boron concentrations on potato late blight epidemics and to explore the mode of action of boron against Phytophthora infestans. When boron was applied alone to field grown potato plants it did not affect the epidemic. However, together with a reduced rate of the fungicide Melody Duo (propineb + iprovalicarb), boron improved late blight suppression compared to plants treated with the fungicide alone. The ED50 of boron against P. infestans (256·4 mg L?1) was about 6400 times higher than the ED50 value of the fungicide chlorothalonil (0·04 mg L?1), indicating that boron does not have a direct fungicidal activity that would explain the level of protection seen in the field. In greenhouse experiments conducted with potted tomato plants, boron decreased late blight severity in both treated leaves and distant leaves not treated with boron. The results suggest that boron is active locally but also may induce systemic acquired resistance against P. infestans.  相似文献   

8.
Inhibition of sporidial multiplication in cultures of Ustilago maydis by 1-[2-(2, 4-dichlorophenyl)-4-ethyl-1, 3-dioxolan-2-ylmethyl]-1H-1, 2, 4-triazolea (CGA-64251), at concentrations of 0.1, 1.0 and 5.0 μg ml?1, increased from about 15% during the first 4 h, to 58–70% during the subsequent 4 to 12-h period. Sporidia became swollen and highly branched in the presence of the fungicide. Total lipid content as a percentage of the dry weight was not affected after exposure of the sporidia to the fungicide at 0.1 or 5 μg ml?1 for 4 h, but synthesis of ergosterol and other demethyl-sterols was inhibited by 87–92%. Large quantities of methyl-sterol precursors of ergosterol and of free fatty acids accumulated in the treated sporidia. Fungitoxicity of CGA-64251 is attributed to inhibition of ergosterol biosynthesis at the stage of sterol C-14 demethylation.  相似文献   

9.
Sorption–desorption of the fungicide triadimefon in field‐moist silt loam and sandy loam soils were determined using low‐density supercritical fluid extraction (SFE). The selectivity of SFE enables extraction of triadimefon from the soil water phase only, thus allowing calculation of sorption coefficients (Kd) at field‐moist or unsaturated conditions. Triadimefon sorption was influenced by factors such as soil moisture content and temperature; sorption increased with increased moisture content up to saturation, and decreased with increased temperature. For instance, Kd values for triadimefon on the silt loam and the sandy loam soils at 40 °C and 10% water content were 1.9 and 2.5 ml g−1, respectively, and at 18% water content, 3.3 and 6.4 ml g−1, respectively. Isosteric heats of sorption (ΔHi) were −42 and −7 kJ mol−1 for the silt loam and sandy loam soils, respectively. Sorption–desorption was also determined using an automated accelerated solvent extraction system (ASE), in which triadimefon was extracted from silt loam soil by 0.01 M CaCl2. Using the ASE system, which is basically a fast alternative to the batch equilibration system, gave a similar ΔHi value (−29 kJ mol−1) for the silt loam soil (Kf = 27 µg1 − 1/n ml1/n g−1). In order to predict transport of pesticides through the soil profile more accurately on the basis of these data, information is needed on sorption as a function of soil water content. © 2000 Society of Chemical Industry  相似文献   

10.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

11.
A new class of agricultural fungicides derived from strobilurins act as respiration inhibitors by binding to mitochondrial cytochrome b. The effects of the strobilurin, kresoxim-methyl, on conidia germination, mycelial growth and the protection of apple leaves from scab development were investigated for two isolates of Venturia inaequalis randomly selected from a culture collection. Inhibition of mycelial growth required relatively high doses of kresoxim-methyl (ED50=1 μg ml-1) for both isolates. In comparison, germination of conidia was highly sensitive for one of the isolates (ED50=0·005 μg ml-1), while the level of inhibition achieved for the second isolate was 60-fold less (ED50=0·3 μg ml-1). As deduced from identical sequences of cytochrome b cDNAs prepared from both isolates, the different responses of germinating conidia to kresoxim-methyl were not caused by differences in the sequence of cytochrome b as the target site for strobilurin action. Strong synergistic effects of salicylhydroxamic acid on kresoxim-methyl inhibitory potency suggested that the reduced kresoxim-methyl sensitivity observed for germinating conidia was caused by interference of the alternative respiratory pathway with inhibitor action. However, this mechanism of target site circumvention in germinating conidia had no adverse effects on the protection of apple leaves from scab infection by kresoxim-methyl. © 1998 Society of Chemical Industry  相似文献   

12.
Two bioassay methods are described which use detached tobacco leaves to measure the sensitivity of Peronospora tabacina to systemic fungicides. Tobacco leaves (13–15 cm2), treated with fungicides before or after detachment from the plant, were inoculated with sporangia in water drops and, after incubation in beakers and Petri plates, the disease severity and/or production of sporangia was determined 4–7 days after treatment with the fungicides. Of 15 systemic fungicides applied to detached leaves, eight N-phenylamides at 0.066?1.0 μg ml?1 controlled blue mould; metalaxyl was the most effective fungicide. Isolates of P. tabacina, collected in the field from tobacco plants grown in soil treated with metalaxyl, were not resistant to the fungicide applied to detached leaves prior to inoculation. The fungicide, applied to leaves before detachment, was used to measure the efficacy of five systemic N-phenylamide fungicides sprayed on the basal and unsprayed distal portions of the leaves. Blue mould was controlled on the basal portion of the leaf by all the fungicides at 0.66?1.0 μg ml?1, but it required the application of 3–30 times more chemical on the basal portion to achieve comparable blue mould control on the distal part of the leaf.  相似文献   

13.
The toxicity of two fumigants to microsclerotia (MS) of Verticillium dahliae in air and in soil was determined in sealed containers. 1, 2-Dibromoethane (DBE, ethylene dibromide) at 470 μ ml?1 of air, or at 12.5 μ g?1 of soil, killed 97% of the MS, both after incubation for 16 days. 1, 3-Dichloropropene (1, 3-D) at 20 μ ml?1 of air, however, killed 100% of the MS after incubation for 30 h, and at 100 μ g?1 of soil after incubation for 3 days. Higher temperatures increased the toxicity of both DBE and 1, 3-D to the MS. The toxicity of DBE increased with increase in soil moisture between 0–80% of field capacity while the toxicity of 1, 3-D increased between 0–20% of field capacity and was constant between 20–80% of field capacity.  相似文献   

14.
Disposition kinetics of cypermethrin and fenvalerate were investigated in lactating black Bengal goats following single dose intravenous administration at 57 and 45 mg kg?1 respectively. The maximum and minimum blood concentrations of cypermethrin were 18.49 (±3.17) and 0.06 (±0.002) μg ml?1, while the corresponding values for fenvalerate were 14.58 (±2.37) and 0.04 (±0.005) μg ml?1 respectively. Both cypermethrin and fenvalerate remained present in blood for 36 h. The mean t1/2β) and Vdarea values were 5.56 (±0.28) h and 10.38 (±2.20) litre kg?1 for cypermethrin and 5.66 (±0.35) h and 11.31 (±2.20) litre kg?1 respectively for fenvalerate. Both cypermethrin and fenvalerate persisted in goat milk for 36 h. The t1/2β) and AUC values of fenvalerate were 7.37 (±1.84) h and 122.38 (±11.65) μg h ml?1 whilst the corresponding values for cypermethrin were 6.66 (±1.54) h and 99.48 (±7.81) μg h ml?1 in milk respectively.  相似文献   

15.
In a field experiment, isoproturon (as Arelon) applied to soil at 2·5 kg ai ha?1 caused variable effects in the rhizosphere of winter wheat. These included transient increases and decreases in the number of bacterial and fungal propagules. No changes in soil levels of NH4+-N, NO2?-N, NO3?-N or PO43? were detected. Similar results were recorded with wheat grown in pots and in laboratory-incubated soil. Arelon (1–60 μg ai ml?1) did not affect pure cultures of bacteria but at the highest concentration (approximating to fifty times field rate) inhibited growth of some fungi. The value of laboratory and field experiments for studying effects of pesticides on micro-organisms is discussed. The results suggest that Arelon, in practical use, is unlikely to have harmful effects on the micro-organisms or fertility of soil.  相似文献   

16.
Wheat leaves (cv. Kormoran) floated on water and kept in darkness turned yellow. This induced senescence was accompanied by a loss of electrolytes and amino acids, and by disorganisation of all cellular organelles except cell walls. Treatment with a solution of carbendazim (20 μg ml?1) prevented the leakage of electrolytes and disorganisation of cell organelles. At 100 μg ml?1, the fungicide did not prevent the damage caused by senescence but stimulated the loss of electrolytes from the leaves. It is proposed that one of the major mechanisms of the antisenescent activity of carbendazim is its protective effect on membranes.  相似文献   

17.
The uptake and metabolism of DDT, fenitrothion and chlorpyrifos were studied in cultures of the ciliate protozoan Tetrahymena pyriformis. When cultures were treated with DDT in concentrations varying from 0.01 to 0.5 μg ml−1, concentrations found in T. pyriformis were 3.8 to 335 μg g−1 dry weight. The accumulation of fenitrothion ranged from 28.7 μg g−1 in cultures treated with 1 μg ml−1 to 2260 μg g−1 in cultures treated with 10 μg ml−1. Under similar experimental conditions chlorpyrifos was accumulated from 24.7 to 15400 μg g−1. The patterns of uptake were dependent on the growth cycle, the ability of the organism to metabolise insecticide and the type of the insecticide used. Maximum accumulation of DDT, fenitrothion and chlorpyrifos occurred in 2, 4 and 6 h respectively. Tetrahymena metabolised DDT to DDD and DDE but failed to metabolise fenitrothion and chlorpyrifos. The effects on growth and morphology of T. pyriformis were studied over a period of 5 days. Higher concentrations (10, 50 and 100 μg ml−1) of DDT inhibited only the growth of the organisms and did not change cell morphology. Fenitrothion was extremely toxic to the organisms and at 5 and 10 μg ml−1 cells became more or less spherical and died after 48 h. However, concentrations of 0.5, 1 and 2.5 μg ml−1 fenitrothion caused growth inhibition, but only at 2.5 μg ml−1 was this permanent. Chlorpyrifos inhibited the growth of the organisms at 1, 5 and 10 μg ml−1 but the morphology was affected only at 5 and 10 μg ml−1.  相似文献   

18.
BACKGROUND: Myclobutanil, a demethylation inhibitor (DMI) fungicide, is an important fungicide for controlling apple scab and powdery mildew. Overuse of this fungicide has led to establishment of scab isolates with reduced sensitivity to this fungicide in several countries. Experiments were conducted to determine the sensitivity of the causal agent of apple scab, Venturia inaequalis (Cooke) Winter, to myclobutanil in the UK, in order to assess whether there is a relationship between fungal insensitivity and the number of DMI applications, and establishing whether fungal sensitivity varied greatly within an orchard. RESULTS: Reduced sensitivity of V. inaequalis to myclobutanil was positively related linearly to the number of DMI applications. ED50 values ranged from 0.028 to 1.017 mg L?1 (average = 0.292) for the baseline population, whereas isolates from two other orchards had much greater ED50 values, ranging from 0.085 to 5.213 mg L?1 (average = 1.852). There was significant variation in fungal sensitivity to myclobutanil among fungal isolates from different locations within a single orchard. CONCLUSIONS: Spatial spread of insensitive isolates of V. inaequalis to myclobutanil is likely to be limited in distance. Conidia may be an important source of primary inoculum. Myclobutanil should still be effective for most field isolates, but its use should be strategically integrated with other groups of fungicides. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
A method is described for the analysis of the herbicide bromoxynil and its octanoate in soils. Following extraction with aqueous acidic acetonitrile, the octanoate was separated from the phenolic bromoxynil by solvent partitioning. The ester and the phenol were assayed by gas-liquid chromatography without further modification or preparation of a derivative. Recoveries in excess of 93% were obtained from soils treated with the phenol and the ester at levels of 0.5 or 0.1 μg g?1. The persistence of bromoxynil octanoate applied at a rate of 3 μg g?1 was studied in the laboratory on a heavy clay and a sandy loam at 85% of field capacity moisture and 20°1°C, both alone and in the presence of 2,4-D (2 μg g?1); MCPA (2 μg g?1); MCPA+asulam (both at 2 μg g?1); and MCPA+difenzoquat (both at 2 μg g?1). In each soil there was a rapid conversion of bromoxynil octanoate to the free phenol, which then underwent a rapid degradation, so that after 7 days, over 90% of the original treatment had disappeared. There appeared to be no effect on bromoxynil breakdown by any of the herbicides added in combination. Small field plots were treated, in early May 1977 and 1978 at two locations in Saskatchewan, with a combination of commercial formulations containing asulam, bromoxynil octanoate, and MCPA at rates of 1 kg ha?1 each. After 10 weeks the plots were sampled and analysis showed that in all cases, no asulam, bromoxynil, or bromoxynil octanoate could be extracted from the top 10 cm of soil.  相似文献   

20.
This study assessed the toxicity and mode of action of a new experimental insecticide, LY219048 in insects and mammals. LY219048 produced rapid convulsions in mice and had LD50 values of 0.7 mg kg?1 and 4 mg kg?1 after intracerebral and intraperitoneal injection, respectively. In initial screens against insects, LY219048 showed low activity against the German cockroach (Blatella germanica L.). Lethality from dietary exposure required one to two weeks, even at concentrations as high as 10000 mg kg?1 (LC50 = 485 mg kg?1). In contrast, it had an LC50 value of 8.3 mg kg?1 against insecticide-susceptible Drosophila melanogaster (Meig.) when synergized with piperonyl butoxide. Significant resistance to LY219048 (> 12-fold) was detected in a cyclodiene-resistant strain of D. melanogaster possessing an altered target site resistance mechanism. This finding suggested that LY219048 blocked the 4-aminobutyric acid (GABA)-gated chloride channel in a manner similar to that of the cyclodienes. In physiological studies in larval D. melanogaster central neurons, LY219048 antagonized the reduction of firing caused by 1 mM GABA. Dose-response experiments showed that the ED50 for blocking inhibition under these conditions was c. 1 μ. Studies of 36CI uptake into bovine brain synaptosomes found that LY219048 was a potent antagonist. At 10 μ it completely blocked chloride flux stimulated by 50 μM GABA. LY219048 competitively displaced [3H]TBOB binding from bovine brain membranes, with an IC50 of 42 nM, which was comparable to values determined for TBPS (35 nM) and picrotoxinin (267 nM). There was little or no displacement (<25%) of [3H]flunitrazepam or [3H]muscimol binding by 10 μM LY219048. Taken together, these results provide strong evidence that this new chemical class of insecticide manifests its acute toxicity by blocking the GABA-gated chloride channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号