首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of zinc nutritional status of the plant on the release of zinc mobilizing root exudates was studied in various dicotyledonous (apple, bean, cotton, sunflower, tomato) and graminaceous (barley, wheat) plant species grown in nutrient solutions. In all species, zinc deficiency increased root exudation of amino acids, sugars and phenolics. However, the root exudates of zinc deficient dicotyledonous species did not enhance zinc mobilization from a synthetic resin (Zn chelite), or a calcareous soil, although mobilization of iron from FeIII hydroxide was increased. By contrast in the graminaceous species, root exudates from zinc deficient plants greatly increased mobilization of both zinc and iron from the various sources. These differences in capability of mobilization of zinc and iron between the plant species are the result of an enhanced release of phytosiderophores with zinc deficiency in the graminaceous species.  相似文献   

2.
微量元素亏缺对人参根系分泌物组成的影响   总被引:6,自引:0,他引:6  
以3年生人参幼苗为试验材料,在室内用正常以及缺少硼、锰、锌、铁元素的1倍Hoagland营养液进行水培养试验,研究不同微量元素亏缺处理对人参根系分泌物主要成分的影响.结果表明:在包括对照在内的5个处理中分别检测到23~30种化合物,包括醇类、脂肪酸、脂肪酸酯、酚酸及其衍生物、醛类和其他类化合物.进一步研究发现,除20种化合物在上述5种不同处理中均检测到外,与对照相比,在微量元素亏缺胁迫下,人参根系分泌物中其他类化合物有所减少,有机酸及酚酸类化合物增多.试验结果表明,微量元素亏缺对根系分泌物组成有显著影响.  相似文献   

3.
ZHENG Yi  ZHANG Fu-Suo 《土壤圈》2000,10(4):333-338
A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of “lime-induced chlorosis“ peanut grown on a clacareous soil in realtion to different soil moistrue conditions.Results showed that chlorosis of peanuts developed under condition of high soil mositure level(250 g kg^-1),while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level(150 g kg^-1).The malic acid maleic acid and succinic acid contents of chlorotic peanut increased by 108.723,0.029,and 22.446ug cm^-1 ,respectively,compared with healthy peanuts.The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts.On Days 28 and 42 of peanut growth,the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts.From Day 28 to Day 42,the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the smae,being 52.4% and 52.8%,respectively,indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under soil moisture conditions.  相似文献   

4.
Root exudates and related exudate diffusion gradients were studied using 14C-radioisotope techniques. With inoculated wheat plants (Triticum aestivum cv. Nugaines), 3.7% of the 14C-labeled photosynthate was released as soluble exudate whereas 3.0% was found with axenic plants. Root surface areas averaged 54 cm2 plant?1. The microbial cells produced were sufficient to colonize 7.4%, of the root surface with a cell monolayer. Gradient studies showed that with inoculated root systems, rapid utilization of soluble exudate markedly decreased the distance of exudate diffusion. Microbial colonization also was a function of the physiological features of the test culture. The relationship between root colonization, exudate production and potential for associative nitrogen fixation is discussed.  相似文献   

5.
The wheat (Triticum aestivum L.) cultivar Yangzhou 158 was used as a reference. The wheat root exudates were collected using a hydroponic mode. The changes of the electrolytes, H+, sugar, organic acids, amino acids, and secondary metabolites in wheat root exudates induced by aluminum (Al) were studied. The research results show that Al stress affects wheat root exudation. The secreted electrolytes and sugar increase with the increasing of the external Al3+ concentration. The total amount of secreted amino acids has a specific correlation with the external Al3+ concentration. At first, the amino acids secrete normally, but when Al3+ concentration is over 10 mg.L-1, the amino acid constitution varies obviously. Under Al stress, some original secondary metabolites disappear gradually, and other new secondary metabolites release simultaneously. Increasing the external Al3+ concentration gradually stimulates the exudation of organic acids. The organic acid levels in the wheat root zone increase in response to Al treatments. Active Al ions are accumulated in wheat roots. This Al-dependent variation in wheat root exudates suggests a specific Al-induced response of the wheat.  相似文献   

6.
Effect of root mucilage and modelled root exudates on soil structure   总被引:4,自引:0,他引:4  
Plant roots release in the rhizosphere diverse organic materials which may have different effects on soil structure. We have evaluated the effect of natural and modelled root‐released materials on soil aggregates and the biodegradation of carbon from roots in the soil. The effects of root mucilage from maize and of a modelled soluble exudate were compared with those of simple compounds (glucose, polygalacturonic acid). For all treatments, soil was amended with 2 g C kg?1 soil and incubated for 30 days at 25°C. The biodegradation of mucilage was similar to that of polygalacturonic acid, and slower than the decomposition of modelled exudates and glucose. Addition of all substrates increased the stability of aggregates, but the duration of this effect depended on the chemical nature of the material. Compared with the control, the proportion of stable aggregates after 30 days of incubation was multiplied by 3.8 for root mucilage, by 4.2 for modelled soluble exudates, by 2.5 for polygalacturonic acid and by 2.0 for glucose. The different fractions of root exudates in the rhizosphere evidently affected the aggregate stability.  相似文献   

7.
Zinc (Zn) deficiency is more common in corn (Zea mays L.) than in sorghum [Sorghum bicolor (L.) Moench] or wheat (Triticum sp.). The ability of wheat to withstand low soil Zn conditions is related to increased release of phytosiderophore from its roots. The reasons for sorghum's ability and corn's inability to utilize low levels of soil Zn have not been explored adequately. The objectives of this research were to 1) ascertain if Zn deficiency could be induced in sorghum, wheat, and corn grown in a chelator‐buffered nutrient solution and 2) determine relative releases of phytosiderophore from roots of sorghum, wheat, and/or corn under Zn‐deficiency conditions. Sorghum, wheat, and corn were grown hydroponically in the greenhouse with a chelator‐buffered nutrient solution designed to induce Zn deficiency, while supplying adequate amounts of other nutrients. Root exudates were collected over time to measure phytosiderophore release. Shoot Zn concentrations and shoot and root dry matter yields were determined also. The technique was effective for inducing Zn deficiency in sorghum, wheat, and corn, as evidenced by reduced shoot and root dry matter yields, shortened internodes, reduced shoot Zn concentrations, and plant Zn concentrations below the suggested critical values for these species. Sorghum and wheat plants increased the release of phytosiderophore in response to Zn deficiency, but com did not. The total amount of phytosiderophore released by the roots was in the order wheat>sorghum>corn. The absence of a “phytosiderophore”; response to Zn deficiency of corn, coupled with the evidence that this species requires, or at least accumulates, more Zn than wheat or sorghum, provides an explanation as to why Zn deficiencies are more prevalent for corn than wheat or sorghum under field conditions.  相似文献   

8.
Zinc (Zn) has a vast number of functions in plant metabolism, the lack of which had dramatic effects on growth and yield of plants. Plants have morphological and biochemical responses to enhance mineral solubility in the soil and facilitate uptake, such as root plasticity, secretion processes and symbioses. Root architecture modification is an important plant response to nutrient availability. The aim of this study was to identify root morphological reactions to Zn efficiency in Iranian bread wheat genotypes. Soil and solution cultures were used to survey Zn efficiency. In soil culture, six and seven genotypes with high and low Zn contents were selected among 110 Iranian bread wheat genotypes, respectively. The solution culture experiments were set up in a completely randomized block design and plants fed with Johnson’s grass solution. All traits were assessed at 30 and 60 DAPs (days after planting). Our results showed a significant difference between two groups of efficient and inefficient genotypes only at 60 DAP, and Zn-efficient genotypes showed 1.63-, 1.50-, 1.69- and 1.92-fold increases in root diameter, surface area density, shoot and root dry weight, respectively, compared to inefficient genotypes. In contrast, Zn-inefficient genotypes had 1.20- and 2.62-fold more root length and fineness, respectively, than efficient genotypes. The positive significant correlations were observed between shoot and Zn uptake as well as root dry weight and Zn uptake at both stages. Furthermore, shoot and root dry weight showed a significant correlation with root fineness, diameter and surface area density at both stages. The path analysis showed indirect effects on Zn uptake through root traits. Our results showed that roots have a major role in Zn efficiency. Therefore, the better growth and greater Zn uptake in efficient genotypes, compared to inefficient ones, can be attributed to greater root diameter and surface area density, and lower root fineness in these genotypes.  相似文献   

9.
连作对花生根系分泌物化感作用的影响   总被引:11,自引:2,他引:11  
采用连续收集法提取连作5 年、3 年和轮作处理的花生结荚期根系分泌物, 研究其对土壤微生物及花生种子发芽、幼苗生长发育和细胞膜过氧化的化感作用及连作对花生根系分泌物化感作用的影响。结果表明,花生结荚期根系分泌物对花生根腐镰刀菌36194 菌丝的生长、叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量存在促进作用, 对固氮菌14046 的生长, 花生种子胚根的伸长、幼苗的苗高、茎叶鲜重、根系鲜重、叶片叶绿素含量等有抑制作用, 促进和抑制作用均随根系分泌物添加浓度和连作年限的增加呈增强趋势。连作花生结荚期根系分泌物化感物质在土壤中的累积, 很可能是导致花生连作障碍的原因之一。  相似文献   

10.
铁肥根系输液矫正苹果缺铁失绿症效果及其机理   总被引:1,自引:0,他引:1  
根系输液条件下,N-Fe能够在短时间内有效地矫正苹果缺铁失绿症,EDTA-Fe容易产生肥害,柠檬酸铁效果居中。红色邻二氮杂菲铁示踪结果表明:二价铁肥根系输处理时仍以二价态由根被动吸收,运输到根、茎、叶和主脉内,运输部位都是靠近形成层的木质部,运输速度每小时可达数十厘米。室内营养液培养的八棱海棠苗用^59Fe示踪结果表明,断根中分配的^59Fe为19.3%,叶中分配的^59Fe占70.9%,八棱海棠  相似文献   

11.
High levels of phosphorus (P) often induce zinc (Zn) deficiency in plants grown on Zn-poor soils. We investigated P-induced Zn deficiency in durum wheat (Triticum durum L. ‘Carpio’) grown on 16 noncalcareous and 31 calcareous soils differing in levels of available (Olsen) P and available (diethylenetriaminepentaacetic acid (DTPA)-extractable) Zn using micropots. A completely randomized factorial design with two levels of P (0 and 40 mg P kg?1 soil) and Zn (0 and 3 mg Zn kg?1 soil), i.e. four treatments (‘control’, + P, + Zn, and + PZn), were used. Grain yield of control plants depended mainly on the Olsen P level. Phosphorus had a negative effect on yield in 6 soils with Olsen P/ZnDTPA > 25, and Zn a positive one in 5 soils with Olsen P/ZnDTPA > 50; and the + PZn treatment generally resulted in the highest yield. Grain Zn concentration of control plants was negatively correlated with growth and Olsen P. Calcareous soils were less sensitive to P-induced Zn deficiency than noncalcareous soils because phosphate is sorbed by calcite rather than being co-adsorbed with Zn on the Fe oxides. Co-application of P and Zn to soil at low and application of Zn at high Olsen P ensured both maximum yield and grain Zn bioavailability.  相似文献   

12.
锌对小麦生长及产量的影响   总被引:1,自引:0,他引:1  
研究表明,缺锌是制约小麦高产的主要因素之一。缺锌条件下小麦增施锌肥可增产3 57%~12 32%。锌对小麦的增产作用主要在于提高了小麦的发根力、根活性及分蘖力,延缓了小麦花后叶面积衰减进程,促进了干物质的积累,增加了成穗数和千粒重。  相似文献   

13.
旱地小麦长期施用锌肥的增产作用及土壤效应   总被引:18,自引:4,他引:18  
随着农业生产条件的改善和作物产量的提高,土壤中微量元素消耗也随着增加,施用微肥已引起普遍重视.黄土地区属于石灰性土壤,碳酸盐含量和pH都较高,土壤有机质含量低,加之受土壤侵蚀的影响,土壤微量元素的可供性较低,作物缺乏微量元素现象较为普遍.  相似文献   

14.
不同铁形态对水稻根表铁膜及铁吸收的影响   总被引:5,自引:0,他引:5  
通过溶液培养试验研究了FeCl2?4H2O和FeCl3?6H2O对水稻根表铁膜数量及铁吸收的影响。结果表明,FeCl2处理时水稻根表铁膜浓度是FeCl3处理的197%~233%。利用EDTA-BPDS对铁膜形态分析看出,根表铁膜中Fe3+占85%~92%,Fe2+占8%~15%。水稻天优998根表铁膜数量显著高于培杂泰丰,其铁吸收是培杂泰丰的115%~138%。两种铁形态处理明显提高水稻的根系活力,其中,FeCl2处理时水稻根系活力增加24%~69%,FeCl3为16%~54%。FeCl2处理时水稻根系SOD、POD和CAT活性分别增加11%~32%、15%~30%和30%~31%,但FeCl3处理没有明显影响。上述结果表明一定浓度铁处理明显增加水稻根表铁浓度和铁吸收;与FeCl3处理相比,FeCl2处理能提高根系抗氧化酶活性,增加水稻的铁吸收和根表铁膜数量。  相似文献   

15.
用溶液培养法研究不同Zn浓度对玉米缺Zn后恢复效果及胚乳在缺Zn中作用结果表明,不同基因型玉米缺Zn后恢复所需的适宜Zn浓度不同,敏感品种比非敏感品种要求更高的Zn浓度。缺Zn后恢复所需适宜Zn浓度高于正常培养所需适宜Zn浓度,低浓度Zn(0.1μmol/L)无恢复作用(生物量)。带上胚乳使敏感品种在缺Zn、低Zn下受抑程度(缺Zn与供Zn生物量差值)提高,而非敏感品种受抑程度反而减小。缺Zn与低Zn培养时体内P含量提高,胚乳可缓解这种影响。缺Zn后再供Zn可使体内Zn含量提高,而P含量降低,玉米对Zn产生奢侈吸收,使体内Zn含量超过正常供Zn水平,表明缺Zn后植物对Zn的要求提高。0.1μmol/L Zn恢复对“吉单120”玉米Zn含量无明显影响,但“辽单22”玉米Zn含量显著提高,这表明非敏感品种比敏感品种利用低Zn的能力更强。  相似文献   

16.
Under Zn deficiency, some major deficiency symptoms were observed on rice plants, i.e., reduction of young leaf elongation and development of necrosis on the expanded leaves. To clarify the former phenomena, the physiological role of Zn was studied from the standpoint of protein synthesis (Kitagishi and Obata 1986; Obata et al. 1994, 1996) and metabolism of auxin (Takaki and Arita 1986; Domingo et al. 1992). In contrast, the direct cause of the latter phenomenon has not yet been studied.  相似文献   

17.
氮素对不同大豆品种根系分泌物中有机酸的影响   总被引:4,自引:0,他引:4  
采用室内溶液培养方法,分别研究了接种根瘤菌处理下,两种氮源和两种氮浓度对两个大豆品种根系分泌物中有机酸的影响。结果表明,合丰25号根系分泌的有机酸种类和数量无论苗期或花期,接种或不接种根瘤菌,均表现为硝态氮处理高于酰胺态氮处理,表明合丰25号大豆更喜硝态氮,硝态氮促进了有机酸的分泌。绥农10号在酰胺态氮下的有机酸种类和数量均高于硝态氮处理,表明其更喜酰胺态氮,酰胺态氮下根瘤菌的存在增加其根系分泌物中有机酸种类和数量。可见,大豆根系分泌物中有机酸的种类和数量因品种而异,因品种对氮源的喜好而变化;根瘤菌在不同程度上增强或减弱根系有机酸的分泌作用。柠檬酸受氮素供应浓度影响很大,当氮素供应浓度较低时,大豆根系分泌物中可检测到柠檬酸,供氮浓度升高则检测不到。  相似文献   

18.
抗氧化水平对小麦幼苗耐缺铁及铁累积能力的影响   总被引:1,自引:0,他引:1  
以小麦品种"石4185"和"沧6001"为试验材料,采用水培方法,分析了抗氧化水平对小麦幼苗耐缺Fe和Fe累积能力的影响。结果表明:Fe缺乏引起小麦根部活性氧(ROS)累积,导致根部产生过氧化伤害,同时降低叶片中叶绿素含量。与"石4185"相比,"沧6001"具有相对较低的ROS水平和较高的叶绿素含量。缺Fe条件下,"沧6001"比"石4185"诱导出更多的根毛和侧根,并具有较高Fe累积。抗氧化酶活性分析结果表明,缺Fe条件下,"沧6001"比"石4185"具有更高的SOD、CAT和APX活性。在缺Fe条件下添加抗氧化剂NAC或AsA提高了幼苗中的Fe含量,表明抗氧化水平的提高促进了小麦幼苗对Fe的吸收和累积。本研究对于理解小麦对缺Fe胁迫响应的生理机制及筛选耐Fe缺乏和高Fe累积的小麦品种具有指导意义。  相似文献   

19.
大豆根系分泌物中氨基酸对根腐病菌生长的影响   总被引:14,自引:0,他引:14  
采用砂培和室内模拟方法,研究了两个抗病性不同的大豆品种水溶性根系分泌物中氨基酸组分随作物生长的变化;同时检测了培养基中添加大豆根系分泌物和纯品氨基酸对大豆根腐病菌菌落生长的影响。结果表明,添加大豆苗期和花荚期根分泌物均显著促进尖镰孢菌菌丝生长,添加成熟期根分泌物显著促进腐皮镰孢菌菌丝生长。易感根腐病大豆品种合丰25号花荚期以后根分泌物中氨基酸种类多于抗根腐病大豆品种绥农10号。感病大豆品种根系分泌的氨基酸总量随生育时期增加,在鼓粒期达到最高;抗病大豆品种根系分泌的氨基酸总量在花荚期最高。感病大豆品种根系分泌的主要氨基酸为精氨酸,抗病大豆品种根系分泌的氨基酸主要为天冬氨酸。氨基酸纯品培养中,添加精氨酸和酪氨酸处理的尖镰孢菌菌落直径显著高于不加氨基酸的对照菌落直径;添加丝氨酸和天冬氨酸的处理菌落直径则显著低于对照处理。同时,添加天冬氨酸的培养基上腐皮镰孢菌菌落直径显著低于不加氨基酸的对照。可见,不同大豆品种根系分泌物中氨基酸组分对病原菌生长起着一定的作用,其表现的作用受根际氨基酸种类和氨基酸浓度影响较大,对于不同病原菌的作用存在差异。  相似文献   

20.
Phytosiderophore (PS) release, which occurs mainly under iron deficiencies in the representative Poaceae, has been speculated to be a general adaptive response to enhance the acquisition of micronutrient metals. However, it is very common to encounter deficiency of micronutrients other than iron (Fe) in soils and interactions with respect of multi-micronutrient deficiency to effect on PS release are not known. Further, the diurnal rhythm for the release of PS may also be affected under multiple micronutrient deficiency. PS release capacity and PS content of roots and the diurnal rhythm of PS release was measured in selected efficient and inefficient wheat genotypes varied on individual and combined deficiency of Fe, zinc (Zn), copper (Cu) and manganese (Mn) in nutrient solution culture. A nutrient sufficient treatment was also taken as experimental control. Lack of Fe in the nutrient medium caused a significantly higher release of PSs followed by Zn, Mn and Cu in the same order. The diurnal rhythm of PS release was similar in the absence of either of the micronutrients or under their combined deficiency. Micronutrient sufficient control did not release any PS. Fe-use-efficient cultivars produced and released a larger amount of PS and differed from the inefficient cultivars in terms of the PS release but not in the PS biosynthesis in the roots. Thus, indicating that the limitation at the level of release of the PS is responsible for low Fe use efficiency of the Fe deficiency susceptible cultivars. Further, the diurnal variation in the PS release was similar for all the investigated wheat cultivars and did not influence the variation in the Fe use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号