首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Information on phosphorus (P) release kinetics and sorption–desorption in soils is important for understanding how quickly reaction approaches equilibrium and replenishes the depleted soil solution. Laboratory experiments were conducted to study the P release and sorption–desorption kinetics in soils differing in clay, soil organic carbon (SOC), available P, and calcium carbonate (CaCO3) contents. Phosphorus release from soils proceeded in two phases: initially faster phase followed by a slower phase as equilibration progressed. Elovich equation (R2 ≥ 0.97**) described well the P release versus time data. P release coefficients for power function were significantly correlated with available P and SOC. Freundlich sorption constants increased with increase in clay and CaCO3 content. With increase in SOC and available P concentration in soils, substantial reduction in sorption constants was observed. It was concluded that for efficient P management, it is important to take into account soil texture, the existing soil P level, SOC content, and soil calcareousness.  相似文献   

2.
The aim of this paper was to compare the concentration of P in soil extracts prepared with water and a ‘soil solution proxy’ (‘SSP’, that is, a salt solution similar in ionic composition and strength to the actual soil solution) with that in 0.01 m CaCl2 extracts, which is usually taken as a measure of soil P intensity. Seventy widely ranging agricultural soils from the Mediterranean part of Spain were used. Soil/solution ratio was 1:10 and extraction time 3 days. For 0.01 m CaCl2, a short extraction time of 30 min was also used as the reference method. CaCl2‐P(3 days) and CaCl2‐P(30 min) were not significantly different for the 40 noncalcareous soils group, but CaCl2‐P(3 days) was significantly larger than CaCl2‐P(30 min) for the 30 calcareous soils group. The Water‐P/CaCl2‐P(30 min) ratio was not significantly related to any soil property, its mean being 6.3 for the noncalcareous and 5.8 for the calcareous soils group. The mean SSP‐P/CaCl2‐P(30 min) ratio was 2.6 for the noncalcareous and 3.1 for the calcareous soils group, and decreased slightly with increasing ionic strength of the soil solution in the noncalcareous soils group. These results are consistent with the promoting influence of the Ca ion and ionic strength on P adsorption by permanent‐charge soils. The fact that extraction with 0.01 m CaCl2 generally results in underestimation of the actual concentration of P in the soil solution should be considered when CaCl2‐P is used as a soil P test.  相似文献   

3.
本工作是研究在CaCO3体系和石灰性土壤体系中NH3的挥发与磷的吸附之间相互作用的化学变化,结果表明:在NH4Cl—CaCO3体系中,通气的pH值比不通气的低,但溶液中Ca2+浓度正好相反。在K2HPO4-CaCO3体系中,在24小时内,通气与不通气的,CaCO3吸附磷没有差异。在24小时反应期间,在DAP-CaCO3体系中,因溶液pH值不断增高,NH3的挥发对CaCO3吸附磷的影响也就逐渐降低。在石灰性土壤体系中,施用尿素加过磷酸钙或单施尿素时,几乎没有发现NH3的挥发,而施DAP时,在6天后,NH3的挥发损失占加入的56%,且DAP处理的土壤,其水溶性磷未通气比通气的高。尿素加过磷酸钙处理的,其水溶性磷通气与未通气的没有差异。另外,尿素加过磷酸钙或过磷酸钙单独处理的土壤,水溶性磷含量均相同。所有这些均表明,在石灰质体系中,NH3的挥发(如果发生的话)能够加强CaCO3对磷的吸附,而磷的吸附又能加强NH3的挥发,两者是相互影响和相互促进的过程。  相似文献   

4.
Abstract

The multiple‐element extractant Mehlich 3 (M3) has not been tested extensively in Europe. In this Land, soil‐P test recommendations are based, since decades, on the evaluation of the Olsen‐extractable P, and the optimal soil‐P levels have been established to range between 1.5 and 3.0 mg of Olsen‐P per 100 g of soil. A research programme was started in order to assess the suitability of M3 as routine soil‐P test in European laboratories. As a first approach, we develop conversion equations from Olsen‐P to M3‐P, in order to assess the agreement and the consistency of the measurements under a wide range of chemical and physical soil properties. To this aim, 120 samples with drastically contrasting features were selected within 206 soils collected from all the regions of South Italy. Soil‐P ranges were 0.07–60.53 for M3, and 0.08–21.47 mg/100 g for Olsen. The results showed that M3‐P was a P extractant more efficient than Olsen. The amounts of M3‐P were, on the average, twice as large as the Olsen‐P ones, with mean values of 5.70 and 2.75 mg/100g, respectively. The soil properties exerted a great influence, as well as showed a contrasting effect, on the extraction efficiency of each method. For neutral‐alkaline calcareous soils, the average M3‐P/Olsen‐P ratio increased to 2.52, and the efficiency of M3 poorly varied according to soil pH and CaCO3 content. On the contrary, in CaCO3‐free acidic soils, the M3‐P/Olsen‐P ratio decreased to 1.63. In particular, anomalous ratio values less than 1.0 were observed for acidic soils with high content of organo‐mineral complexes with be shifted to 3.7–7.7 for calcareous soils, and to 2.7–4.9 for CaCO3‐free soils. Field calibrations would give more information to establish the proper values according to either the soil properties and plant requirements. The results encourage the introduction of M3 as routine soil‐P test in our Countries. One must take into account, however, that some soil properties, in particular the CaCO3 content, migth be considered for a more precise comparative evaluation with existing laboratory data.  相似文献   

5.
The stability of Fe-EDTA and Fe-CDTA was investigated in order to evaluate their effectiveness under calcareous soil conditions. To accomplish this evaluation the reaction rate of fixation, K, the adsorption coefficient, Kd, and the retardation factor, S, of the iron chelate were determined through column experiments at pH 7.8 and two ionic strengths, I, of CaCl2. The results indicated that iron in Fe-EDTA was more fixed than in Fe-CDTA. The fixation increased by increasing the ionic strength. Also it increased linearly with increasing CaCO3 content of the soil. The values of retardation factor, S, showed that this parameter depended more on the surface area of the soil than on I or CaCO3 content. The product KS depends on CaCO3 content, surface area of the soil, ionic strength and chelating agent used. It can be taken as an index for the efficiency of the iron chelate under different conditions. Fe-EDTA was more adsorbed than Fe-CDTA, the adsorption increased with increasing ionic strength and surface area of the soil.  相似文献   

6.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

7.
叶炳  王虹 《土壤学报》1984,21(1):21-28
目前应用Langmuir吸附等温式来探讨土壤对磷酸离子的吸附作用,较为广泛.自从Olsen(1957)系统地报道以来,从机理到结合生产实际的研究已有大量的报道,我国近年来也有研究.由于土壤本身组成的复杂性,多数学者用纯物质(如纯粘土或铁与铝的含水氧化物等)进行吸附等温式的机理研究,已取得了很多结果.  相似文献   

8.
Changes in soil solution composition and concentrations of exchangeable cations and mineral N in undisturbed cores of pasture soil were investigated in two experiments following applications of sheep urine to the cores. The major cations applied in the urine were K+ and Na+, and the major anions were HCO3? and Cl?. Addition of urine increased concentrations of exchangeable K+, Na+ and NH4+ and measured ionic strength of the soil solution throughout the surface 15 cm of soil, demonstrating that the urine moved through the core by macropore flow immediately following addition. Immediately following urine application the ionic strength in soil solution in the surface 2.5 cm of soil increased from 4–6 MM to 24–41 mM. Hydrolysis of urine-urea was extremely rapid, and in less than 1 d high concentrations of NH4+-N (i.e. 270–370 mg N kg?1) had accumulated in the surface 0–2.5 cm of the urine patch, and soil pH had risen by over one unit. Nitrification then proceeded and, after approximately 15 d, NO3? became the dominant form of mineral N present. During nitrification, soil pH declined and the ionic strength of the soil solution increased substantially with NO3? becoming the dominant anion present in solution. There were concomitant increases in the concentrations of Ca2+ and, to a lesser extent, Mg2+ in the soil solution as NO3? concentrations increased. After approximately 30 d, concentrations of exchangeable NO3? had risen to 250–330 mg N kg?1, soil solution NO3? concentrations had increased to about 80 mmol, dm?3, and ionic strength in the soil solution had increased to 130–140 mM. These results demonstrate the dominating effect of N transformations in causing large fluctuations in the pH, ionic composition and ionic strength of the soil solution in the urine patch. It was concluded that nutrient availability in the patch was affected directly by nutrient addition in urine, and also probably indirectly through the fluctuations in soil solution pH and ionic strength that occur.  相似文献   

9.
Effects of soil organic matter (80M) on P sorption of soils still remain to be clarified because contradictory results have been reported in the literature. In the present study, pH-dependent P sorption on an allophanic Andisol and an alluvial soil was compared with that on hydrogen peroxide (H202)-treated, acid-oxalate (OX)-treated, and dithionite-citrate- bicarbonate (DCB)-treated soils. Removal of 80M increased or decreased P sorption depending on the equilibrium pH values and soil types. In the H2O2 OX-, and DCB-treated soils, P sorption was pH-dependent, but this trend was not conspicuous in the untreated soils. It is likely that 80M affects P sorption of soils through three factors, competitive sorption, inhibition of polymerization and crystallization of metals such as AI and Fe, and flexible structure of metal-80M complexes. As a result, the number of available sites for P sorption would remain relatively constant in the wide range of equilibrium pH values in the presence of 80M. The P sorption characteristics were analyzed at constant equilibrium pH values (4.0 to 7.0) using the Langmuir equation as a local isotherm. The maximum number of available sites for P sorption (Q max) was pH-dependent in the H202-, OX-, and DCBtreated soils, while this trend was not conspicuous in the untreated soils. Affinity constants related to binding strength (K) were less affected by the equilibrium pH values, soil types, and soil treatments, and were almost constant (log K ≈ 4.5). These findings support the hypothesis that 80M plays a role in keeping the number of available sites for P sorption relatively constant but does not affect the P sorption affinity. By estimating the Q max and K values as a function of equilibrium pH values, pH-dependent P sorption was well simulated with four or two adjustable parameters. This empirical model could be useful and convenient for a rough estimation of the pH-dependent P sorption of soils.  相似文献   

10.
Abstract

Soil pot culture experiment was conducted on 22 soils of Balewal‐Phaguwala‐Narike (BPN) and 24 soils of Isri‐Langrian‐Narike (ILN) associations using rice (PR 106) as test crop at 0 and 7.5 ppm Zn levels. Chelating extractants 0.005M DTPA, 0.01M EDTA‐(NH4)2CO3 and 0.05M EDTA, extracted more soil Zn than double‐acid and were significantly correlated with each other as well as with soil pH and clay in BPN and only with clay in ILN soil association. Soil CaCO3 governed the double‐acid extractable Zn in these soils. Dry matter yield and Zn uptake by rice significantly increased with 7.5 ppm Zn application. The response was higher in ILN than BPN soil association, The DTPA method gave the highest correlation with Bray's yield and Zn uptake (r =0.72 and 0.55) followed by 0.05M EDTA (r ‐ 0.75 and 0.61) or EDTA‐(NH4)2CO3 (r =0.70 and 0.61). The predictability of rice yield improved from 18–27 to 27–35, 32–43, 34–44 and 51–55 percent as a result of stepwise inclusion of pH, CaCO3, organic carbon (OC) and clay respectively in the regression equation alongwith Zn extracted by chelating agents.

The critical levels of DTPA, EDTA‐(NH4)2CO3 and EDTA extractable Zn significantly differed in the two associations and were 0.69, 0.82 and 1.24 ppm in BPN and O.BC, 1.09 and 1.42 ppm in ILN soil association. Soil properties further affected the critical levels. This for DTPA available Zn was 0.80 and 1.03 ppm in soil containing less and greater than 2% CaCO3, 1.03 and 0.80 ppm in soils containing less and greater than 0.25% OC. These values for EDTA‐(NH4)2CO3 available Zn were 1.09 and 0.91 ppm Zn in soils containing less and greater than 15% clay suggesting that critical levels of Zn for each category of soil properties should be considered while making recommendations of Zn fertilization of crops.,  相似文献   

11.
As the acidity of rain diminishes, changes in the pH, ionic strength, and ion activities of the soil solution will influence the charge characteristics of soil. We have investigated the response of cation exchange capacity (CEC) of three acid forest soils of variable charge to small changes in pH, ionic strength, and SO2?4 concentration. The variable charge for these temperate soils has the same significance as for tropical soils and those from volcanic ash. Maximum absolute increase in CEC on increasing pH by 0·2–0·5 units reached 5 cmolc kg-1 in O horizons. The increase in CEC on doubling ionic strength in EA and Bsh horizons of a Cambic Podzol was about half that amount, but relative gains compared to effective CEC were 65 and 46%, respectively. For other soil horizons, absolute changes were smaller, and relative changes were between 10 and 30%. Halving the SO2?4 concentration significantly influenced CEC only in some samples. Both pH and ionic strength must be adjusted with care when determining CECc of acid forest soils. Decreasing acid deposition will not inevitably increase CECc because in some soils pH effects may be balanced by simultaneous decrease in ionic strength.  相似文献   

12.
Crop response to the phosphorus (P) application is often erratic in most soil types in the world. In Algeria, there is no information on the P behavior in calcareous soils. The purposes of this work were to investigate the degree of P fixing capacity and to predict P fertilizer requirements of crops according to calcareous levels in the soil. Soil samples (at 0–30 cm depth) were collected and spiked with 0, 25 and 50% of lime (CaCO3). Phosphate sorption curves were well fitted to the Freundlich equation. Results indicated that the calcareous level was predominantly controlled the P sorption indices [sorption capacity (a), and P sorption energy (n)] to affect the estimation of external d P requirement (EPR0.2) and P fertilizer rates. The understanding of P sorption and desorption by soils and extrapolating the developed relationship between soil calcareous contents and P fertilizer rates would be quite promising and accurate approach for the economic and effective use of P fertilizers in calcareous soils of Algeria.  相似文献   

13.
THE HIGH- AND LOW-ENERGY PHOSPHATE ADSORBING SURFACES IN CALCAREOUS SOILS   总被引:2,自引:0,他引:2  
The two-surface Langmuir equation was used to study P adsorption by 24 calcareous soils (pH 7.2-7.6; 0.8-24.2 per cent CaCO3) from the Sherborne soil series, which are derived from Jurassic limestone. High-energy P adsorption capacities (xm) ranged from 140–345 μg P/g and were most closely correlated with dithionite-soluble Fe. Hydrous oxides therefore appear to provide the principal sites, even in calcareous soils, on which P is strongly adsorbed (xm 6–51 ml/μg P). The low-energy adsorption capacities (xm) ranged from 400–663 μg P/g and were correlated with organic matter contents and the total surface areas of CaCO3 but not with per cent CaCO3, pH, or dithionite-soluble Fe. Total surface areas of CaCO3 in the soils ranged from 4.0 to 8.5 m2/g soil. Low-energy P adsorption capacities agree reasonably with values (100 pg P/m2) for the sorption of phosphate on Jurassic limestones but phosphate was bonded much less strongly by soil carbonates (k″= 0.08–0.45 ml/μg P) than by limestones (k~10.0 ml/μg P). Low-energy P adsorption in these soils is tentatively ascribed to adsorption on sites already occupied by organic anions (and probably also by bicarbonate and silicate ions) which lessen the bonding energy of co-adsorbed P.  相似文献   

14.
Characterization of calcium phosphates depended upon the nature and the amount of phosphate used to react with reagent-grade CaCO3. Formation of octa-calcium phosphate (OCP) was inferred from the solubility equilibria after reacting CaCO3 with KH2PO4 solutions. Isotopic exchange measurements confirmed the presence of OCP, when the amount of P retained exceeded 44 μrnoles/g CaCO3. The determined surface-Ca to surface-P molar ratios were close to the theoretical Ca/P ratio of 1.33 in OCP. As P retained on CaCO3 decreased the surface Ca/P ratio markedly increased because of interference from surface Ca of the CaCO3. When CaCO3 was reacted with monocalcium phosphate (MCP), solubility equilibria indicated the formation of dicalcium phosphate dihydrate (DCPD). Isotopic exchange measurements, however, showed an average Ca/P ratio of only 0.375. This value corresponds to the composition of the metastable triple point solution (MTPS) formed on MCP dissolution rather than to the Ca/P ratio in DCPD. MCP application decreased the measured surface-Ca (exchangeable Ca) either for soil or Ca-resin, because of blocking of the exchange sites by the MCP reaction products and, consequently, a lower rate of isotopic exchange. Surface phosphorus of the two investigated calcareous soils proved to be proportional to the lowering in pH initiated by MCP application. Characterization of MCP reaction products in calcareous soils may thus prove infeasible, in view of the unexpected reduction in surface-Ca and the pH dependency of surface P.  相似文献   

15.
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3 ) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0% in the CaCO3 amended soil to 460% in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgCl2 should not be used to sterilize calcareous soil if the experiment includes the measurement of soil CO2 production.  相似文献   

16.
The effect of soil heating on the dynamics of soil available nutrients in the rhizosphere was evaluated. A pot experiment was carried out by using a rhizobox; a pot which enables to sample soils and soil solutions not only temporally with plant growth but also spatially depending on the distance from the root-accumulating compartment. The experiment consisted of 4 treatments; soils with or without heating treatment (150°C, 3 h), each of which was either planted with maize (Zea mays L.) or not. During the 17-d experiment, soil solutions at 0–2 mm from the root-accumulating compartment were collected 5 times. Soils depending on the distance from the root-accumulating compartment and plants were also collected after the experiment. The ionic concentrations of the soil solutions and soil water extracts, and the nutrient contents of plants were analyzed. Immediately after soil heating, the concentrations of cations, SO4 2-, CI-, water-soluble P, and water-soluble organic carbon increased significantly. With plant growth, the total ionic concentration in the rhizosphere soil solution increased for heated soil, whereas it decreased for unheated soil. The increase of the concentrations of cations and SO4 2- in the rhizosphere of heated soil was appreciable, suggesting that the movement of cations such as Ca2+ and Mg2+ by mass flow was regulated by that of SO4 2-. Moreover soil heating inhibited nitrification, resulting in the supply of N mainly in the form of NH4 + within 10 mm from the root-accumulating compartment. As a result, the soil pH decreased in the rhizosphere of heated soil. The amount of nutrients absorbed by plants, on the other hand, did not change significantly by soil heating except for an increase of P uptake. The increase of P uptake could be explained not only by the immediate increase of the water-soluble P concentration but also by the dissolution of Ca-bound P and the hydrolysis of water-soluble organic P in the rhizosphere.  相似文献   

17.
Little is known about solubility and soil solution concentrations of most elements occurring in the solid phase of soils. This study reports changes in solution concentrations of 60 mineral elements following CaCO3 addition to a moderately acid semi‐natural soil, and possible mechanisms accounting for the differing solubility patterns as related to soil acidity are discussed. Soil solutions were obtained by high‐speed centrifuging and ultrafiltration (0.2 μm) of samples at 60% water‐holding capacity of the A horizon of a Cambisol developed from a shale–gneiss moraine and supplied with CaCO3 at 20 rates to yield a soil solution pH range of 5.2–7.8. Concentrations of elements were determined in the solutions by ICP‐AES or (for most elements) ICP‐MS. Several distinct patterns of soil solution concentrations as a function of soil solution pH were demonstrated. Positively related to pH and CaCO3 supply were soil solution concentrations of As, Br, Mo, S, Sb, Se, U, and W, and to a lesser degree, Co, Cr, Hg, Mg, and Sr. Inversely related to pH were concentrations of Al, B, Ba, Bi, Cs, Ce, Eu, Ga, Ge, Fe, Li, K, Rb, Na, Th, and Ti; less distinctly inversely rated were Dy, Er, Gd, Hf, La, Lu, Mn, Nd, Pr, Sm, Sc, Si, Tl, Tm, and Yb. ‘U‐shaped’ relationships to pH were demonstrated for the concentrations of Ag, Cd, Nb, Ni, P, V, and Zr. There were no or irregular relations between pH and concentrations of Be, Cu, Ho, Pb, Ta, and Tb. Differences between elements in their soil solution concentrations as related to total (HNO3‐digestible) concentrations and the solubility of organic C were also treated. Increasing the pH of a soil by adding CaCO3 changes the solubility of most mineral elements substantially, the several distinct patterns observed being governed by, for example, ionic properties and charge, affinity for organic compounds, and pH‐dependent formation and solubility of complexes.  相似文献   

18.
Phosphate desorption isotherms were determined (a) by shaking 1 g soil with 3 ml 0.01M CaCl2 solution plus different amounts of an anion exchange resin, and (b) by diluting soil with different volumes of 0.01M CaCl2 solution. Adsorption isotherms were determined using a soil to solution ratio of 1 g to 3 ml. In soils of intermediate P status adsorption isotherms appeared continuous with desorption by method (a), but not with desorption by method (b), which predicted lower buffer powers than did (a). Method (a) led to increases and (b) to decreases in pH. Additions of dissolved silica had no influence on P desorption by method (b).  相似文献   

19.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

20.
In a preliminary laboratory experiment, samples from three cultivated and three virgin acid sulphate soils (pH 3.9-4.7) were treated with water or equivalent amounts of Ca(OH)2 or KOH and incubated at about field capacity for three months. Both base treatments (133 meq/kg) similary reduced soil acidity and, thus, the same influence on the pH-dependent biological and chemical reactions was concluded. The liming-induced mineralization of organic S seemed to account for increased extratability of sulphate, being in most soils of the same magnitude in both treatments. Inversely, the solubility of P hardly was affected by the decomposition of organic matter but rather by the reactions of inorganic P. KOH markedly raised water-soluble P, whereas Ca(OH)2 did not. The results of a rapid extraction test suggested that the poorer extractability of P in the soils amended with Ca(OH)2 could partly be ascribed to a higher Ca saturation and its impact on the electrochemical properties of charged surfaces. In addition, a higher base-associated ionic strength created by Ca2+ was of great importance in reducing the P desorption in the Ca(OH)2- treated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号