首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘源  袁金华  钱薇  徐仁扣 《土壤》2012,44(5):735-739
通过培养试验,比较研究了油菜秸秆、稻草、香樟叶和豌豆秸秆单独施用以及油菜秸秆、稻草和香樟叶与豌豆秸秆混合施用对红壤酸度的改良效果。结果表明,在60天培养期内,添加4种物料均提高了土壤pH。培养试验结束时香樟叶、油菜秸秆、豌豆秸秆和稻草分别使土壤pH相对对照增加0.53、0.42、0.30和0.26。对于灰化碱含量很高的非豆科物料如香樟,其对土壤酸度的改良效果主要来源于物料所含碱性物质和物料对土壤硝化反应的抑制,但对灰化碱含量较低的非豆科物料如油菜秸秆和稻草,其改良效果主要来源于后者。豆科类豌豆秸秆主要通过所含碱性物质和有机氮矿化提高土壤pH,但培养试验后期铵态氮硝化反应释放的质子抵消了其部分改良效果。将油菜秸秆、稻草和香樟叶与豌豆秸秆配合施用,使硝化反应受到一定程度的抑制,提高了物料对土壤酸度的改良效果。培养试验结束时,香樟叶、稻草和油菜秸秆与豌豆秸秆配合施用比豌豆秸秆单独施用土壤pH分别高0.25、0.18和0.12。研究发现,香樟叶灰化碱含量很高,无论单独施用,还是与豌豆秸秆配合施用均有很好的改良效果,因此在南方地区推广种植香樟可以通过其凋落物修复酸化的森林土壤。  相似文献   

2.
三种植物物料对两种茶园土壤酸度的改良效果   总被引:4,自引:4,他引:4  
王宁  李九玉  徐仁扣 《土壤》2009,41(5):764-771
用室内培养实验研究了稻草、花生秸秆和紫云英在 5、10 和 20 g/kg 的加入量水平下对茶园黄棕壤和茶园红壤酸度的改良效果.结果表明:除了黄棕壤加入紫云英处理会降低土壤的 pH 外,其余所有加入植物物料的处理均使土壤 pH 有不同程度的增加,使土壤交换性酸和交换性Al的数量减小,使土壤交换性盐基阳离子和盐基饱和度增加.有机物料对土壤酸度的改良效果与有机物料灰化碱和N含量有关,灰化碱和有机N的矿化使土壤 pH 升高,NH4+-N的硝化使土壤 pH 降低.3种植物物料中花生秸秆对土壤酸度的改良效果优于紫云英和稻草.加入植物物料使红壤中有毒形态Al的浓度显著减小,说明植物物料能够缓解红壤中Al对植物的毒害.  相似文献   

3.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.  相似文献   

4.
Farmers in the inland valleys of northern Ghana are challenged with nitrogen (N) deficiency as a major production constraint of rainfed lowland rice (Oryza sativa L.). With extremely low use of external inputs, there is a need to efficiently use the systems' internal resources such as native soil N. Largest soil nitrate‐N losses are expected to occur during the transition between the dry and wet season (DWT) when the soil aeration status changes from aerobic to anaerobic conditions. Technical options avoiding the build‐up of nitrate are expected to reduce N losses and may thus enhance the yield of rice. A field study in the moist savanna zone of Ghana assessed the in situ mineralization of native soil N, the contribution of nitrate to the valley bottom by sub‐surface flow from adjacent slopes, and the effects of crop and land management options during DWT on seasonal soil Nmin dynamics and the yield of lowland rice. Large amounts of nitrate accumulated during DWT with a peak of 58 kg ha−1 in lowland soils, of which 32 kg ha−1 were contributed from the adjacent upland slope. Most of this nitrate disappeared at the onset of the wet season, possibly by leaching and denitrification upon soil flooding. While the incorporation of rice straw (temporary immobilization of soil N in the microbial biomass) had little effect on soil N conservation, growing a crop during DWT conserved 22–27 kg of soil N ha−1 in the biomass and Crotalaria juncea supplied an additional 43 kg N ha−1 from biological N2 fixation. Farmers' practice of bare fallow during DWT resulted in the lowest rice grain yield that increased from 1.3 (2.2) to 3.9 t ha−1 in case of the transition‐season legume. Growing a pre‐rice legume during DWT appears a promising option to manage N and increase lowland rice yields in the inland valleys of northern Ghana.  相似文献   

5.
Lowland rice is a staple food for more than 50% world population. Iron toxicity is one of the main nutritional disorders, which limits yield of lowland rice in various parts of the world. The toxicity of iron is associated with reduced soil condition of submerged or flooded soils, which increases concentration and uptake of iron (Fe2 +). Higher concentration of Fe2 + in the rhizosphere also has antagonistic effects on the uptake of many essential nutrients and consequently yields reduction. In addition to reduced condition, increase in concentration of Fe2 + in submerged soils of lowland rice is associated with iron content of parent material, oxidation-reduction potential, soil pH, ionic concentration, fertility level, and lowland rice genotypes. Oxidation-reduction potential of highly reduced soil is in the range of –100 to –300 mV. Iron toxicity has been observed in flooded soils with a pH below 5.8 when aerobic and pH below 6.5 when anaerobic. Visual toxicity symptoms on plants, soil and plant tissue test are major diagnostic techniques for identifying iron toxicity. Appropriate management practices like liming acid soils, improving soil fertility, soil drainage at certain growth stage of crop, use of manganese as antagonistic element in the uptake of Fe2 + and planting Fe2 + resistant rice cultivars can reduce problem of iron toxicity.  相似文献   

6.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

7.
The fertility of farmed soils in parts of the Papua New Guinea (PNG) highlands reputedly has been declining for some time owing to population pressure. To assess the extent of the problem, a survey of sweet potato gardens was conducted across four of the highlands provinces and information on soil variables was obtained for gardens on soils of volcanic and non-volcanic origins. In the absence of fertilizer application, soil fertility in the humid tropics is largely a function of soil cation exchange capacity (CEC), and soils of low CEC had previously been reported in this region. In the present study, relationships between effective CEC (ECEC) and other soil properties in moderately acidic soils (pH 5.5–6.3) were investigated to see if there was scope for improving soil cation retention characteristics through management of key soil variables. For volcanic soils of varying allophane content, ECEC was, unexpectedly, negatively correlated with soil C and soil C/N, most probably because of the formation of humus–allophane complexes which had facilitated organic matter accumulation whilst dramatically reducing the free negative charges on the material. Given the latter outcome, the indigenous practice of heaping compost in the centre of soil mounds appeared to be one of the best strategies for circumventing the problem of low CEC, as nutrients in the compost are held in an environment virtually independent of the surrounding soil mineralogy. Although the positive correlation between soil pH and soil ECEC was weak for volcanic soils, it was concluded that liming might nevertheless be an effective means of enhancing the nutrient retention characteristics of these soils provided the practicalities and costs were not prohibitive.  相似文献   

8.
《Journal of plant nutrition》2013,36(8):1471-1504
Abstract

Iron (Fe) toxicity is a widespread nutrient disorder of wetland rice grown on acid sulfate soils, Ultisols, and sandy soils with a low cation exchange capacity, moderate to high acidity, and active Fe (easily reducible Fe) and low to moderately high in organic matter. Iron toxicity reduces rice yields by 12–100%, depending on the Fe tolerance of the genotype, intensity of Fe toxicity stress, and soil fertility status. Iron toxicity can be reduced by using Fe-tolerant rice genotypes and through soil, water, and nutrient management practices. This article critically assesses the recent literature on Fe toxicity, with emphasis on the role of other plant nutrients, in the occurrence of and tolerance to Fe toxicity in lowland rice and puts this information in perspective for future research needs. The article emphasizes the need for research to provide knowledge that would be used for increasing rice production on Fe-toxic wetlands on a sustainable basis by integration of genetic tolerance to Fe toxicity with soil, water, and nutrient management.  相似文献   

9.
长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响   总被引:16,自引:0,他引:16  
利用34年的长期定位施肥试验,研究不施肥(CK)、施氮磷钾肥(NPK)和氮磷钾化肥配施石灰(NPK+Ca O)对红壤性水稻土不同形态酸、土壤盐基离子及水稻植株阳离子吸收量的影响,探讨土壤交换性H+和Al3+占交换性酸的比例、土壤盐基离子、植株带出阳离子数量与土壤酸度的关系。结果表明,长期NPK处理早、晚稻土壤p H较CK处理分别降低0.2和0.3个单位,交换性酸提高2.3倍和4.2倍,水解性酸提高35.4%和40.0%;NPK+Ca O处理早、晚稻土壤p H较NPK处理分别提高0.5和0.7个单位,较CK处理分别提高0.3和0.4个单位,交换性酸、水解性酸均显著低于NPK和CK处理(p0.05)。土壤交换性H+、Al3+含量高低顺序均为NPK+Ca OCKNPK。土壤交换性盐基离子以交换性Ca2+所占比例最大(81.8%~89.3%),NPK+Ca O处理交换性Ca2+较CK和NPK处理分别提高40.1%和62.9%。交换性Ca2+、交换性盐基离子、盐基饱和度与土壤p H正相关,与交换性酸、水解性酸负相关,交换性Mg2+与交换性酸、水解性酸负相关,交换性Na+与水解性酸负相关。植株移出带走的钙、镁、钾、钠离子量及其总量对土壤p H、交换性酸和水解性酸有一定影响,但其相关性均不显著。研究表明长期施用化肥条件下通过配施石灰可有效缓解稻田土壤的酸化,促进酸性稻田土壤的生态修复与改良。  相似文献   

10.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

11.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

12.
Purpose

This study compares the dynamic effects of straw and biochar on soil acidity and phosphorus (P) availability in the rice growth period to reveal how straw and biochar affect the availability of phosphorus in soil and utilization of P for rice crop.

Materials and methods

In the pot experiment, rice straw, canola stalk, and corresponding biochars were mixed uniformly with the Ultisol. Soil samples were collected at four stages of rice growth to analyze the dynamic changes of soil acidity and P availability. The availability of phosphate in straw/biochar-amended soils were evaluated using a combination of chemical extraction and diffusive gradients in thin films (DGT) technique.

Results

Soil pH, KCl-P, Olsen-P, DGT-P, and Al-P deceased with the rice growth, while Fe-P increased. Biochar increased soil pH and P availability more than straw returning, especially in the mature stage, while the DGT-P only increased in the tillering stage. The DGT-induced fluxes in sediments (DIFS) model revealed that all treatments increased the capacity of soil solid phase supplementing P to pore water in the filling and mature stages. The content of total P in different rice tissues followed the order of grain?>?straw?>?root, and RB350 treatment had the highest P content in rice tissues. In the mature stage, soil pH had positive correlations with KCl-P and Olsen-P, and soil Fe-P had positive correlations with total P of root and straw.

Conclusions

Application of biochar made at 550 ℃ resulted in a larger increase in available P in soil, while biochar made at 350 ℃ had more effect on the chemical forms of P. The canola stalk biochar showed a larger influence on the P availability than rice straw biochar. Biochar treatments had a larger effect on inhibiting soil acidification and improving P availability than straw returning directly.

  相似文献   

13.
Abstract

Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of increasing amounts (0–30%; weight:weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha?1, the estimated increase in soil pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent on soil CEC (low CEC resulting in stronger pH increase), and to a lesser extent on initial soil pH (higher initial pH resulting in stronger pH increase). Addition of BC also increased the amount of exchangeable base cations (cacao shell ? oil palm and rice husk) and CEC. Through this systematic screening of the effect of BC on pH and CEC of acidic soils, we show that a small addition of BC, in particular if made of cacao shell, to acidic agricultural soils increases soil pH and CEC. However, the response is highly dependent on the type, quality and amount of the added BC as well as on intrinsic soil properties, mainly CEC.  相似文献   

14.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

15.
The average yield of upland rice under no-tillage system (NTS), a sustainable soil management, is lower than in conventional tillage (one plowing and two disking). One of the reasons given for this drop in crop grain yield would be the low-nitrate assimilation capacity of rice seedlings, due to the low activity of the nitrate reductase (NR) enzyme in the early development phase. A greenhouse experiment was conducted to evaluate the effects of the soil acidic and nitrogen source in the micronutrient concentrations, NR activity and grain yield of upland rice growing under NTS. The soil used in the experiment was an Oxisol. The experimental design was completely randomized in a factorial 3 × 4. Treatments consisted of three levels of soil acidity (high, medium, and low) combined with four nitrogen sources (nitrate, ammonium, ammonium + nitrification inhibitor, and control – without N fertilization). The reduction of soil acidity reduced the concentration of zinc and manganese in rice plants. Generally, the activity of the NR enzyme was higher in plants grown in soils with low acidity and fertilized with calcium nitrate. There was a greater response in growth and yield in rice plants grown in soils with high acidity. Under medium acidity, rice plants grown with ammonium sulfate were more productive (no differences were detected with the addition of the nitrification inhibitor).  相似文献   

16.
Abstract Soil samples have been taken periodically from unlimed plots of the 130-year-old Park Grass Experiment and from the 100-year-old Geescroft Wilderness at Rothamsted. Changes in the pH of the samples show how acidification has progressed. The soils are now at, or are approaching, equilibrium pH values which depend on the acidifying inputs and on the buffering capacities of the soils. We have calculated the contributions to soil acidification of natural sources of acidity in the soil, atmospheric deposition, crop growth and nutrient removal, and, where applicable, additions of fertilizers. The relative importance of each source of acidification has changed as the soils have become more acid. Acid rain (wet deposited acidity) is a negligible source, but total atmospheric deposition may comprise up to 30% of acidifying inputs at near neutral soil pH values and more as soil pH decreases. Excepting fertilizers, the greatest causes of soil acidification at or near neutral pH values are the natural inputs of H+ from the dissolution of CO2 and subsequent dissociation of carbonic acid, and the mineralization of organic matter. Under grassland, single superphosphate and small amounts of sodium and magnesium sulphates have had no effect on soil pH, whilst potassium sulphate increased soil acidity slightly. All of these effects are greatly outweighed under grassland, however, by those of nitrogen fertilizers. Against a background of acidification from atmospheric, crop and natural inputs, nitrogen applied as ammonium sulphate decreased soil pH up to a maximum of 1.2 units at a rate in direct proportion to the amount added, and nitrogen applied as sodium nitrate increased soil pH by between 0.5 and 1 unit.  相似文献   

17.
【目的】酸性硫酸盐土(ASS)酸含量极高,Fe、 Al、 Mn、 As等有毒金属移动性强。许多开发利用方式不仅影响其成土母质黄铁矿的氧化程度并可能带来生态风险,稻作利用被认为是生态风险较低的方式。本研究开展水田和荒地两种利用条件下ASS中酸含量调查研究,探讨稻作利用方式对ASS酸含量的影响。【方法】于2013年8月,在广东省台山市发育于珠江三角洲滨海ASS的水稻田和严重酸化的长期撂荒地采集土壤样品,从土表向下0—300 cm范围内采用宽45 mm的土钻每20 cm采集1个样品,每个剖面共采集15个样品。比较两种利用方式下ASS各土层土壤pH值、 水溶性酸、 交换性酸、 吸持性酸含量,探讨稻作利用方式对ASS酸分布及运移的影响。【结果】珠江三角洲平原ASS的酸含量极高,在0—80 cm深度范围内,总存在酸含量随着土层深度加深而提高,土层深度每下降20 cm,总存在酸含量就平均提高61.62%; 80 cm以下土层总存在酸含量随着土层深度下降逐渐降低,其中80—180 cm深度范围内的降幅较大,土层深度每下降20 cm,总存在酸含量就平均降低61.62%; 当土层深度下降至220 cm时,pH值上升到6.0,酸含量非常低。稻作利用方式显著影响ASS的酸含量及其在土壤剖面的迁移情况。与荒地比较,稻田0—80 cm土层的总存在酸含量显著降低,其中水溶性酸、 交换性酸和吸持性酸含量平均降幅分别为77.01%、 36.75%、 27.74%,水溶性酸和交换性酸的差异达到显著水平,吸持性酸仅在0—20 cm 和60—80 cm土层的差异达到显著水平; 100—120 cm深度范围内稻田的总存在酸含量显著高于荒地,其中水溶性酸、 交换性酸和吸持性酸含量的增幅分别为128.19%、 54.87%、 154.96%,120—240 cm土层中,稻田的交换性酸和吸持性酸含量稍高于荒地,但差异不显著; 240—300 cm土层中,稻田的酸含量与荒地基本相同。总体上,稻作方式改变了ASS中酸在土壤剖面的分布,其中0—80 cm土层中酸含量显著降低,而100—120 cm土层的酸含量显著提高,并以吸持性酸为主要形式固定累积下来。稻田在0—80 cm深度范围内的水溶性硫含量显著低于荒地; 而稻田100—120 cm土层的水溶性硫含量则显著高于荒地,其他土层的差异不显著。水溶性硫与水溶性酸、 交换性酸和吸持性酸均显著正相关,表明稻作利用方式可能通过影响硫酸盐矿物的转化过程而改变ASS的酸分布及迁移。【结论】稻作利用方式显著降低上层土壤酸含量,并加强了酸淋洗下移作用,使100—120 cm土层中的酸含量大幅提高,并以黄钾铁矾等羟基硫酸盐次生矿物暂时吸持固定下来。因此,稻作利用方式有效降低ASS酸含量水平,降低ASS对实地作物的危害作用,但因其强淋溶作用可能加大了对地下水体污染的风险。  相似文献   

18.
有机物料对强酸性茶园土壤的酸度调控研究   总被引:3,自引:1,他引:2  
王磊  汪玉  杨兴伦  张明  蒋新 《土壤》2013,45(3):430-436
通过室内培养的方式,研究了不同添加剂量下,不同C/N与灰化碱含量的有机物料对酸性茶园土壤的改良能力.试验结果表明:有机物料的添加可以有效地减少土壤交换性酸、铝饱和度,增加土壤交换性碱基,但是在调节土壤pH能力上并非一定有效.初始阶段,“灰化碱”的释放与有机氮的矿化提高了土壤的pH,随后pH由于硝化作用出现不同程度的下降.C/N高的作物秸秆(小麦和水稻秸秆)能够有效地抑制硝化,使pH下降幅度较小;而C/N低的作物秸秆(花生秸秆和菜籽饼)促进硝化,使pH大幅度下降.最终土壤pH与其C/N呈正相关性(y=0.00343x+4.14,r=0.977),而与其灰化碱含量无关.并且随着秸秆添加剂量的加大,C/N高的作物秸秆最终调剂pH的能力是显著提高的(P<0.05),而C/N低的作物秸秆最终调剂pH的能力没有显著提高(P<0.05).因此,C/N高的作物秸秆可能更适合土壤酸度的长期调节,与其相关的田间试验需要进一步进行证实.  相似文献   

19.
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium‐based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid‐neutralizing materials. ‘Liming’ also reduces N2O emissions, but this is more than offset by CO2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as ‘EC Fertiliser Liming Materials’ but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.  相似文献   

20.
We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The amounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0–20 cm) and around 6 at 100–150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号