首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A feeding experiment was conducted to evaluate the effect of rotifers (Brachionus plicatilis) and Artemia sp. enriched differently on early growth, survival and lipid class composition of Atlantic cod larvae (Gadus morhua). Rotifers enrichments tested were: (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) a combination of Pavlova sp. paste and AlgaMac 2000®. The same treatments were tested with Artemia as well as a combination of DC DHA Selco® and AlgaMac 2000® as a fourth treatment. After rotifer feeding, the larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw)] were significantly heavier than larvae from treatment 2 (1.03 ± 0.04 mg dw). After feeding Artemia, the larvae from treatment 1 were significantly heavier (12.06 ± 2.54 mg dw) than those from treatments 3 (6.5 ± 0.73 mg dw) and 4 (5.31 ± 1.01 mg dw). Treatment 3 resulted in the best survival through the 59 days of larviculture. After rotifer feeding, high larval concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and ω6 docosapentaenoic acid (ω6DPA) could be linked to better larval growth and survival while after feeding Artemia, high larval DHA/EPA ratios (~3) and high DPA/AA ratios (>1) could be linked to better survival.  相似文献   

2.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

3.
We evaluated the effects of enriched rotifers on growth, survival and on the lipid composition of haddock larvae. The treatments tested were (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) Pavlova sp. paste and AlgaMac 2000®. The treatments did not influence larval growth rate throughout the experimental period (P = 0.70). Larvae from all treatments grew approximately 8% of their dry weight per day between 1 and 29 days post hatch (dph). Treatment 3 resulted in the best survival, estimated to be 3 on a scale from 0 to 5, whereas for the two other groups the survival estimates were 0 and 2. Rotifers from treatment 1 had low sterol concentrations, high eicosapentaenoic acid/arachidonic acid ratio and their feeding resulted in high larval mortality. Rotifers enriched with Pavlova sp. had the lowest proportions of the sum of saturated fatty acids, docosahexaenoic acid and sum of ω3 and the highest proportions of the sum of monounsaturated fatty acids (ΣMUFA). This was partially reflected in larvae from treatment 3 in that they had the highest proportions of ΣMUFA and the lowest proportions of Σω3 (P < 0.0001 for both analyses). In addition, these larvae had the highest and lowest ΣC20 and ΣC22 polyunsaturated fatty acids (PUFA) respectively (P < 0.0001 for both analyses). We suggest that more research with ω3 and ω6 PUFA can lead to improvements in the rearing of haddock larvae produced in hatcheries.  相似文献   

4.
Proteome analysis was used to study the effects of feeding early Atlantic cod (Gadus morhua) larvae with a saithe (Pollachius virens) protein hydrolysate (SPH). Protein hydrolysates have previously been shown to beneficially affect fish larval development. Feeding was initiated on day 2 post hatch (ph) or as soon as the larvae opened their mouth and the protein expression was monitored 4 days later or in 6‐dph cod larvae. The results demonstrated changes in the abundance of 13 protein spots in the cod larvae fed SPH. Of these, seven protein spots were up‐regulated and six protein spots showed down‐regulation. Five of the up‐regulated proteins in cod larvae are known to be involved in energy metabolism. A few early larval specific proteins were down‐regulated in the SPH‐fed cod larvae possibly because of an enhanced development in this group relative to the control group. Two trypsin isoforms were detected within the cod larval proteome. The detection of the trypsin spots was made possible by co‐electrophoresis of known cod trypsins with the cod larval protein extract. Surprisingly, no difference in trypsin content was observed between the SPH‐fed and the control larval groups.  相似文献   

5.
There is a growing interest in preserving microalgal preparations to maintain constant properties over a long period. The aim is to ensure sufficient delivery of essential fatty acids (and other key nutrients) to mollusc and crustacean larvae and to zooplankton used as live prey in the first feeding of fish larvae. For example, the rotifer Brachionus plicatilis has to be enriched with polyunsaturated fatty acids (PUFA) prior to fish feeding. We used four microalgal species [ Isochrysis galbana (T-ISO), Chaetoceros muelleri (CHGRA), Pavlova lutheri (MONO), and Nannochloropsis sp.] both as fresh culture or in a frozen-concentrated form to enrich rotifers. Overall, rotifers had similar relative fatty acid levels when fed the frozen-concentrated or fresh microalgal diets. The levels of 20:4n-6, 22:6n-3, and 20:5n-3 between B. plicatilis and the microalgal diets were linearly correlated. The fatty acid 20:4n-6 was the most readily assimilated: the content found in rotifers reached half the level measured in the microalgal diets. Our results indicate that both the fresh and frozen-concentrated forms of the four microalgal species can be used to enrich PUFA levels in rotifers. Further experiments should be conducted to test if assimilation differs when rotifers are enriched with mono- or multispecific microalgal preparations.  相似文献   

6.
This study investigated the effects of photoperiod and temperature on plasma melatonin secretion in Atlantic cod (Gadus morhua L.). Initial work confirmed the presence of a diel profile of melatonin synthesis, with elevated levels during the dark phase. Unusually for fish, the peak in plasma melatonin occurred towards the end of the dark phase, which is indicative of a type `A' melatonin profile. When exposed to 60 hours of continuous darkness a clear endogenous rhythm of melatonin synthesis was observed, which continued for 4 cycles with a periodicity which, approximated to 24 h. When acclimated to varying temperatures (4, 8, 12 or 16 °C) no variation in melatonin production was seen, however, body size appeared to be an important influence, with the smallest fish exhibiting significantly higher levels of dark phase melatonin. Finally, the application of additional night-time illumination to cod maintained in sea cages i.e. without blackout, did not significantly reduce dark phase plasma melatonin, suggesting that cod are less sensitive to photoperiod manipulation in cages than salmonids.  相似文献   

7.
Gut‐associated bacteria of fish are known to produce enzymes which aid in digestion. The presence and activities of these bacteria in cold‐water fishes like Atlantic cod are less known. Therefore, we have characterized the activities of extracellular enzymes of GP21 (Pseudomonas sp.) and GP12 (Psychrobacter sp.), two bacteria isolated from the gastrointestinal tract of Atlantic cod. Additionally, we examined if these bacteria when delivered through feeds could influence the activity of selected intestinal enzymes. GP21 was able to produce amylase, chitinase, cellulase and protease, whereas GP12 could produce only chitinase and protease. These enzymes were produced extracellularly and they were found to be catalytically active at acidic conditions (pH 2–5) and at temperatures ranging from 15 to 30 °C. Orally delivered bacteria could possibly influence the activity of intestinal enzymes after 40 days, rather than after 20 days of feeding. Thus GP21 and GP12, the potential probiotic organisms, could support digestion in Atlantic cod.  相似文献   

8.
The effects of oxidized dietary lipid and the role of vitamin E on the growth performance, blood parameters and body composition of juvenile Atlantic cod (Gadus morhua) were evaluated over a 9‐week feeding period. Four isonitrogenous experimental diets containing fresh or oxidized fish oil with or without added vitamin E (α‐tocopherol or mixed tocopherols) were fed to juvenile cod. The oxidized lipid used had a peroxide value of 94 mEq kg?1 oil. No significant (P>0.05) differences in growth performance (weight gain and specific growth rate) or feed utilization (feed consumption and feed efficiency ratio) were observed when oxidized dietary lipid was used. The hepatosomatic index (HSI), viscerosomatic index (VSI) and haematocrit did not show any significant (P>0.05) differences among the treatments. However, erythrocyte osmotic fragility (EOF), referred to as susceptibility to haemolysis, of fish fed oxidized oil without added vitamin E was high in comparison with those fed unoxidized oil. Supplementation with α‐tocopherol appeared to decrease haemolysis, but mixed tocopherols had no significant (P>0.05) effect on EOF. The proximate composition of fish whole body was also affected by diet treatment. Fatty acid composition of liver total lipid reflected that of dietary lipid. Variations in tissue (liver and muscle) fatty acid composition among the treatments followed the same trend as those of the dietary fatty acids. Fish fed fresh oil had a higher proportion of polyunsaturated fatty acids (PUFA) in muscle and liver lipid than those fed oxidized oil. The results suggest that oxidized dietary oil affected juvenile Atlantic cod in certain tissues and that these effects could be alleviated by supplementation of sufficient amounts of vitamin E in the diet.  相似文献   

9.
Replicated groups of Atlantic cod were rearedfor up to 40 days in 100 l tanks stocked at adensity of 75 eggs l–1. Larvae weretransferred from rotifers, Brachionusplicatilis, to either fresh-hatched orenriched Artemia nauplii on each of days5, 15 and 25 post-hatch (ph). Rotifers wereprogressively withdrawn over a 5 day period.The type of Artemia offered(fresh-hatched, enriched) did not affectsurvival or growth rates at any of the 3transfer ages. Larvae transferred toArtemia from day 5 ph suffered a highincidence of swimbladder over-inflation andhigh mortality during metamorphosis (< 1%survival to day 36 ph). Cod in the day 15 and day25 transfer groups did not differ significantlyin weight-specific growth rate or size on day40 ph (mean standard length 13.8 mm, dry weight3.8 mg). Highest mean survival rates to day 40ph (18.1%) and lowest mortality followingtransfer to nursery tanks were also observed inthe day 25 transfer groups. Fish that receivedArtemia from day 5 ph containedcirca twice as much total lipid per unit bodyweight and had a 30% higher triacylglycerol(TAG) content compared to all other groups.Ratios of the essential fatty acidsdocosahexaenoic acid (DHA), eicosapentaenoicacid (EPA) and arachidonic acid (ARA) alsodiffered according to age-at-transition.DHA:EPA ratio exceeded 1 only in codtransferred to Artemia on day 25 ph.Based on these findings, it is recommended thatintensively reared Atlantic cod should continueto receive rotifers until completion ofmetamorphosis.  相似文献   

10.
We estimated recent growth of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae collected on the southern flank of Georges Bank in May 1992–94 from the ratio of RNA to DNA (R/D) and water temperature. Growth of both species increased with water temperature to about 7°C and then decreased. The highest growth rates were observed in May 1993 at water temperatures around 7°C. These data confirm an earlier observation of comparable temperature optima for growth of Atlantic cod and haddock larvae in the north‐west Atlantic. Comparisons of field growth rates and temperature optima with data for larvae cultured at high temperatures and prey densities in the laboratory suggest that growth may have been food‐limited at higher temperatures on Georges Bank. Given that 7°C is the long‐term mean water temperature on the southern flank in May and that climate models predict a possible 2–4°C rise in water temperatures for the western North Atlantic, our findings point to a possible adverse effect of global warming on Atlantic cod and haddock.  相似文献   

11.
Lernaeocera branchialis is a penellid copepod, the adults of which are commonly found on gadoids in the North Atlantic and North Sea. L. branchialis has a severe negative impact on wild gadoids and is a potentially serious pathogen of farmed cod, Gadus morhua. This paper describes an experimental infection by cohabiting the intermediate host, the flounder, Platichthys flesus, heavily infected with juvenile stages of L. branchialis, with hatchery-reared cod in order to study the pathology of the early stages of infection of the final host. Early stages of L. branchialis induce extensive local gill hyperplasia, large intravascular thrombus formation and a moderate cellular immune response in the cardiac and branchial tissues of G. morhua. The parasite appears to migrate within the lumen of the afferent branchial artery, ventral aorta and in turn, that of the bulbus arteriosus. These findings are consistent with the presence of a haematophagous, voluminous and rapidly invasive parasite.  相似文献   

12.
Juvenile Atlantic cod (Gadus morhua) were fed extruded feeds formulated to contain 360–660 g kg?1 protein, 80–280 g kg?1 lipid and 80–180 g kg?1 starch at feeding frequencies of either once per day or every second day to satiation. The trial was conducted at 8 °C and lasted for 28 weeks during which fish were weighed five times at regular intervals. Sampling for proximate analysis was performed at the start, after 12 weeks and at the end of the trial. Fish grew from an average weight of 192 g to between 750 and 866 g, with growth being negatively affected by low dietary protein concentration. High dietary starch concentrations had some negative effects on growth, whereas changes in dietary fat concentration had no significant effect on growth. Liver indices (at the end of the experiment) varied between 80 and 170 g kg?1, and there was a negative correlation between the ratio of protein to fat and liver index. Feed conversion ratio (FCR) ranged between 0.74 and 0.88, and feed utilization improved with increasing concentrations of dietary protein and fat. Increasing dietary starch concentrations resulted in poorer feed utilization. To achieve good growth and protein retention, and avoid excessive liver size in juvenile cod, feeds should contain 500–600 g kg?1 crude protein, 130–200 g kg?1 lipid and <150 g kg?1 starch.  相似文献   

13.
The effects of two weaning diets and different weaning protocols on growth, survival, skeletal deformity and gut morphology of Atlantic cod larvae were studied in four groups from 16 to 45 days posthatch (dph). Cod larvae in groups 1 (early weaning with control diet) and 2 (early weaning with experimental diet) were used to evaluate the effects of different polar lipid content of weaning diets on larval and juvenile performance. Cod larvae in groups 2, 3 (early weaning with experimental diet + cofeeding with Artemia) and 4 (earlier weaning with experimental diet and earlier cofeeding with Artemia) were used to evaluate the effects of early introduction of dry diet and Artemia. From 45 to 170 dph, cod juveniles from all four groups were reared using a standard feeding protocol. No significant differences in growth, survival, deformities and gut morphology were found between cod larvae and juveniles from groups 1 and 2. Cod larvae fed on cofeeding regime with Artemia nauplii (groups 3 and 4) were bigger and had lower frequencies of jaw and neck deformities and higher foregut microvillus circumference than cod larvae from group 2. Our results demonstrate the importance of proper weaning protocols in producing better quality cod juveniles.  相似文献   

14.
Effect of season and diet on muscle composition were evaluated in farmed Atlantic cod (Gadus morhua L.), fed varying levels of macro‐nutrients, and kept at two different light regimes during 1 year grow‐out in sea‐cages. The cod were fed seven different diets varying in protein, lipid and starch, in a mixture design. The diets spanned 4–20% starch, 8–26% lipid and 36–66% protein. Each dietary regime was subjected to two different light regimes: continuous light (24 h), or natural light (August 2001 to June 2002). Fish subjected to natural light started to mature in December/January and spawning was more or less completed during March/April. No maturation was registered in the continuous light groups at this point. No variation was found in muscle dry matter, protein or lipid concentration as a consequence of the dietary or light regime variations, except for the groups spawning in March. Glycogen varied from 1 to 6.5 mg g?1 wet weight, without any correlation to the present dietary variations. At the June 2002 sampling all groups given a natural light regime showed almost twice the concentration of muscle glycogen compared with fish subjected to continuous light. Such clear results were not measured at the December or March samplings. Increased dietary lipid resulted in lowered muscle vitamin E concentration. A strong covariation between muscle vitamins C and E was found at all samplings, and these showed a negative correlation towards eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), and the ratio n‐3/n‐6 in muscle. The highest dietary vitamin E resulted in the lowest muscle vitamin C concentrations. All dietary lipid added was identical and of marine origin; in addition, the wheat added as a starch source summed up parts of the dietary lipid fraction, resulting in slightly decreased sum of polyenes in the diets holding the highest levels of wheat. The lean cod muscle consists almost solely of membrane lipids. These were, however, highly influenced by the dietary lipid composition, especially as concerned the different monoenes. Two of the diets showed tendencies to increased thiobarbituric acid‐reactive substances (TBARS). This was not reflected in the muscle concentrations of vitamins E or C, and did not result in any changes in muscle TBARS values at any of the samplings, except for the fish spawning in March. The water‐soluble fraction of the muscle protein, pH range from 4.5 to 6, did show a difference in structure when comparing our experimental cod to wild cod. We could also identify a differential pattern between some of the experimental groups. The method used to identify this was, however, not quantitative, and further studies are needed. Taste panel evaluation and shear force measurements after final sampling in June concluded with minor differences between muscles from the different diet groups, except for fish given one diet with relatively high protein, intermediate lipid and low starch levels. Fish kept at continuous light was described as less firm (texture) compared with fish kept at natural light, explained partly by the different size of these two categories of fish. In conclusion, both diet and season (spawning or not) did influence several of the measured muscle parameters.  相似文献   

15.
In vitro cell culture methods are crucial for the isolation, purification and mass propagation of intracellular pathogens of aquatic organisms. Cell culture infection models can yield insights into infection mechanisms, aid in developing methods for disease mitigation and prevention, and inform commercial‐scale cultivation approaches. This study details the establishment of a larval cell line (GML‐5) from the Atlantic cod (Gadus morhua) and its use in the study of microsporidia. GML‐5 has survived over 100 passages in 8 years of culture. The line remains active and viable between 8 and 21°C in Leibovitz‐15 (L‐15) media with 10% foetal bovine serum and exhibits a myofibroblast phenotype as indicated by immuno‐positive results for vimentin, α‐smooth muscle actin, collagen I and S‐100 proteins, while being desmin‐negative. GML‐5 supports the infection and development of two microsporidian parasites, an opportunistic generalist (Anncaliia algerae) and cod‐specific Loma morhua. Using GML‐5, spore germination and proliferation of L. morhua was found to require exposure to basic pH and cool incubation temperatures (8°C), in contrast to A. algerae, which required no cultural modifications. Loma morhua‐associated xenoma‐like structures were observed 2 weeks postexposure. This in vitro infection model may serve as a valuable tool for cod parasitology and aquaculture research.  相似文献   

16.
Western rock lobster, Panulirus cygnus, phyllosoma were grown from hatching to stage IV. Larvae were fed with Artemia enriched with a (i) base enrichment (Base) containing 520 g kg?1 squid oil or tailor made enrichments in which oils high in polyunsaturated fatty acid (PUFA) have been added at the expense of squid oil. These treatments were (ii) base enrichment supplemented with docosahexaenoic acid (DHA) rich oil, (iii) base enrichment supplemented with arachidonic acid (AA) rich oil, or (iv) base enrichment supplemented with DHA and AA (D + A) rich oils. Total survival of phyllosoma to stage IV was high, with no significant difference between treatments (range 12.3–17.5%). By stage IV, the larvae fed the DHA or AA enriched Artemia were significantly larger (3.33 mm length) than larvae fed the Base or D + A enriched Artemia (3.18–3.24 mm length). Phyllosoma were sampled at stages II and III for biochemical analysis. The major lipid class (LC) in all phyllosoma was polar lipid (PL) (88.9–92.4%), followed by sterol (ST) (6.2–9.7%). Triacylglycerol (TAG), free fatty acid (FFA) and hydrocarbon/wax ester were minor components (≤1%) in all phyllosoma samples. In contrast, the major LC in all enrichments and enriched Artemia was TAG (76.3–85.1% and 53.4–60.2%, respectively), followed by PL (11.4–14.8% and 30.6–38.1% respectively). The main fatty acids (FA) in phyllosoma were 16:0, 18:1n‐9, 18:1n‐7, 18:0, AA, eicosapentaenoic acid (EPA) and DHA. Addition of AA, and to a lesser extent DHA, to enrichments resulted in increased levels of those FA in Artemia and phyllosoma compared with the Base enrichment. This was particularly evident for stage III larvae. Comparatively, elevated growth for phyllosoma to stage IV was achieved with DHA and AA enriched diets. Our findings highlight the importance of lipids and in particular essential long‐chain PUFA, as nutritional components for phyllosoma diets.  相似文献   

17.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

18.
Temperature and body size are widely agreed to be the primary factors influencing vital rates (e.g., growth, mortality) in marine fishes. We created a biophysical individual‐based model which included the effects of body size and temperature on development, growth and mortality rates of eggs, larvae and juveniles of Atlantic cod (Gadus morhua L.) in the North Sea. Temperature‐dependent mortality rates in our model were based on the consumption rate of predators of cod early‐life stages. The model predicted 35%, 53% and 12% of the total mortality to occur during the egg, larval and juvenile stages, respectively. A comparison of modeled and observed body size suggested that the growth of survivors through their first year of life is high and close to the growth rates in ad libitum feeding laboratory experiments. Furthermore, our model indicates that experiencing warmer temperatures during early life only benefits young cod (or theoretically any organism) if a high ratio exists between the temperature coefficients for the rate of growth and the rate of mortality. During the egg stage of cod, any benefit of developing more rapidly at warmer temperatures is largely counteracted by temperature‐dependent increases in predation pressure. In contrast, juvenile (age‐0) cod experiences a higher cumulative mortality at warmer temperatures in the North Sea. Thus, our study adds a new aspect to the ‘growth–survival’ hypothesis: faster growth is not always profitable for early‐life stages particularly if it is caused by warmer temperatures.  相似文献   

19.
20.
Atlantic cod, Gadus morhua, harvested in US waters are currently managed as a Gulf of Maine stock and as a stock comprising Georges Bank and southern New England populations. Over the past two and a half decades, success of age‐1 recruitment to the Gulf of Maine stock has varied by more than an order of magnitude. To investigate the hypothesis that this variation is related to variation in the transport of larval cod to nursery areas, we carried out model simulations of the movement of planktonic eggs and larvae spawned within the western Gulf of Maine during spring spawning events of 1995–2005. Results indicate that the retention of spring‐spawned cod, and their transport to areas suitable for early stage juvenile development, is strongly dependent on local wind conditions. Larval cod retention is favored during times of downwelling‐favorable winds and is least likely during times of upwelling‐favorable winds, during which buoyant eggs and early stage larvae tend to be advected offshore to the Western Maine Coastal Current and subsequently carried out of the Gulf of Maine. Model results also indicate that diel vertical migration of later stage larvae enhances the likelihood of retention within the western Gulf of Maine. Consistent with model results is a strong correlation between age‐1 recruitment success to the Gulf of Maine cod stock and the mean northward wind velocity measured in Massachusetts Bay during May. Based on these findings, we propose a wind index for strong recruitment success of age‐1 cod to the Gulf of Maine stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号