首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared vertical gradients in leaf gas exchange, CO(2) concentrations, and refixation of respired CO(2) in stands of Populus tremuloides Michx., Pinus banksiana Lamb. and Picea mariana (Mill.) B.S.P. at the northern and southern boundaries of the central Canadian boreal forest. Midsummer gas exchange rates in Populus tremuloides were over twice those of the two conifer species, and Pinus banksiana rates were greater than Picea mariana rates. Gas exchange differences among the species were attributed to variation in leaf nitrogen concentration. Despite these differences, ratios of intercellular CO(2) to ambient CO(2) (c(i)/c(a)) were similar among species, indicating a common balance between photosynthesis and stomatal conductance in boreal trees. At night, CO(2) concentrations were high and vertically stratified within the canopy, with maximum concentrations near the soil surface. Daytime CO(2) gradients were reduced and concentrations throughout the canopy were similar to the CO(2) concentration in the well-mixed atmosphere above the canopy space. Photosynthesis had a diurnal pattern opposite to the CO(2) profile, with the highest rates of photosynthesis occurring when CO(2) concentrations and gradients were lowest. After accounting for this diurnal interaction, we determined that photosynthesizing leaves in the understory experienced greater daily CO(2) concentrations than leaves at the top of the canopy. These elevated CO(2) concentrations were the result of plant and soil respiration. We estimated that understory leaves in the Picea mariana and Pinus banksiana stands gained approximately 5 to 6% of their carbon from respired CO(2).  相似文献   

2.
We compared the carbon isotope composition of ecosystem-respired CO2 (delta13C(R)) from 11 forest ecosystems in Canada and the USA and examined differences among forest delta13C(R) responses to seasonal variations in environmental conditions from May to October 2004. Our experimental approach was based on the assumption that variation in delta13C(R) is a good proxy for short-term changes in photosynthetic discrimination and associated shifts in the integrated ecosystem-level intercellular to ambient CO2 ratio (c(i)/c(a)). We compared delta13C(R) responses for three functional groups: deciduous, boreal and coastal forests. The delta13C(R) values were well predicted for each group and the highest R2 values determined for the coastal, deciduous and boreal groups were 0.81, 0.80 and 0.56, respectively. Consistent with previous studies, the highest correlations between delta13C(R) and changes in environmental conditions were achieved when the environmental variables were averaged for 2, 3 or 4 days before delta13C(R) sample collection. The relationships between delta13C(R) and environmental conditions were consistent with leaf-level responses, and were most apparent within functional groups, providing support for our approach. However, there were differences among groups in the strength or significance, or both, of the relationships between delta13C(R) and some environmental factors. For example, vapor pressure deficit (VPD) and soil temperature were significant determinants of variation in delta13C(R) in the boreal group, whereas photosynthetic photon flux (PPF) was not; however, in the coastal group, variation in delta13C(R) was strongly correlated with changes in PPF, and there was no significant relationship with VPD. At a single site, comparisons between our delta13C(R) measurements in 2004 and published values suggested the potential application of delta13C(R) measurements to assess year-to-year variation in ecosystem physiological responses to changing environmental conditions, but showed that, in such an analysis, all environmental factors influencing carbon isotope discrimination during photosynthetic gas exchange must be considered.  相似文献   

3.
We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations between delta13C(P) in needles with delta13C(R) and delta13C(R-soil) at the forest level suggest that 13C observations scale between leaf and ecosystem levels.  相似文献   

4.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

5.
Whitehead D  Gower ST 《Tree physiology》2001,21(12-13):925-929
Measurements of the photosynthetic response to midsummer irradiance were made for 11 species representing the dominant trees, understory shrubs, herbaceous plants and moss species in an old black spruce (Picea mariana (Mill.) B.S.P.) boreal forest ecosystem. Maximum rates of photosynthesis per unit foliage area at saturating irradiance, A(max), were highest for aspen (Populus tremuloides Michx.), reaching 16 micromol m(-2) s(-1). For tamarack (Larix laricina (Du Roi) K. Kock) and P. mariana, Amax was only 2.6 and 1.8 micromol m(-2) s(-1), respectively. Values of A(max) for understory shrubs and herbaceous plants were clustered between 9 and 11 micromol m(-2) s(-1), whereas A(max) of feather moss (Pleurozium schreberi (Brid.) Mitt.) reached only 1.9 micromol m(-2) s(-1). No corrections were made for differences in shoot structure, but values of photosynthetic light-use efficiency were similar for most species (70-80 mmol CO2 mol(-1)); however, they were much lower for L. laricina and P. mariana (15 mmol CO2 mol(-1)) and much higher for P. schreberi (102 m;mol CO2 mol(-1)). There was a linear relationship between Amax and foliage nitrogen concentration on an area basis for the broad-leaved species in the canopy and understory, but the data for P. mariana, L. laricina and P. schreberi fell well below this line. We conclude that it is not possible to scale photosynthesis from leaves to the canopy in this ecosystem based on a single relationship between photosynthetic rate and foliage nitrogen concentration.  相似文献   

6.
Søe AR  Buchmann N 《Tree physiology》2005,25(11):1427-1436
Soil CO2 efflux (soil respiration) plays a crucial role in the global carbon cycle and efflux rates may be strongly altered by climate change. We investigated the spatial patterns of soil respiration rates in 144 measurement locations in a 0.5-ha plot and the temporal patterns along a 300-m transect in the 0.5-ha plot. Measurements were made in an unmanaged, highly heterogeneous beech forest during 2000 and 2001. We investigated the effects of soil, roots and forest stand structure on soil respiration, and we also assessed the stability of these spatial patterns over time. Soil temperature alone explained between 68 and 95% of the temporal variation in soil respiration; however, pronounced spatial scatter of respiration rates was not explained by soil temperature. The observed spatial patterns stayed remarkably stable throughout the growing season and over 2 years. The most important structural parameter of the stand was the mean diameter at breast height of trees within a distance of 4 m of the measurement locations (m-dbh4), which explained 10-19% of the variation in soil respiration throughout the growing season. Among the soil chemical parameters, carbon content (bulk as well as dissolved) and magnesium content explained 62% of the spatial variation in soil respiration. The final best model combining soil, root and stand structural parameters (fine root biomass, soil carbon content, m-dbh4 and soil water content) explained 79% of the variation in soil respiration, illustrating the importance of both biotic and abiotic factors.  相似文献   

7.
Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation.  相似文献   

8.
In many second-rotation Pinus radiata forest planta-tions, there has been a steady trend towards wider tree spacing and an increased rate of application of P fertiliser. Under these regimes, the potential for understory growth is expected to in-crease through increased light and greater nutrient resources. Therefore, understory vegetation could become a more signifi-cant component of P cycling in P. radiata forests than under closely-spaced stands. Studies have shown that growth rates and survival of trees is reduced in the presence of understory vegeta-tion due to the competition of understory vegetation with trees. Other studies have suggested that understory vegetation might have beneficial effects on nutrient cycling and conservation within forest stands. This review discusses the significance of understory vegetation in radiata pine forest stands, especially their role in enhancing or reducing P availability to forest trees.  相似文献   

9.
Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.  相似文献   

10.
Sefcik LT  Zak DR  Ellsworth DS 《Tree physiology》2006,26(12):1589-1599
Seedling responses to elevated atmospheric CO(2) concentration ([CO(2)]) and solar irradiance were measured over two growing seasons in shade-tolerant Acer saccharum Marsh. and Fagus grandifolia J.F. Ehrh. and shade-intolerant Prunus serotina, a J.F. Ehrh. and Betula papyrifera Marsh. Seedlings were exposed to a factorial combination of [CO2] (ambient and elevated (658 micromol mol-1)) and understory shade (deep and moderate) in open-top chambers placed in a forest understory. The elevated [CO(2)] treatment increased mean light-saturated net photosynthetic rate by 63% in the shade-tolerant species and 67% in the shade-intolerant species. However, when measured at the elevated [CO(2)], long-term enhancement of photosynthesis was 10% lower than the instantaneous enhancement seen in ambient-[CO(2)]-grown plants (P < 0.021). Overall, growth light environment affected long-term photosynthetic enhancement by elevated [CO(2)]: as the growth irradiance increased, proportional enhancement due to elevated [CO(2)] decreased from 97% for plants grown in deep shade to 47% for plants grown in moderate shade. Results suggest that in N-limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO(2)-enriched atmosphere than trees growing in more moderate shade, because of greater downregulation in the latter environment. If photosynthetic gains by deep-shade-grown plants in response to elevated [CO(2)] translate into improved growth and survival of shade-intolerant species, it could alter the future composition and dynamics of successional forest communities.  相似文献   

11.
Understory vegetation controls, in a significant way, the regeneration of overstory trees, carbon sequestration and nutrient retention in tropical forests. Development and organization of understory vegetation depend 3n climate, edaphic and biotic factors which are not well correlated with plant community structures. This study aimed to ~xplore the relationships between understory vegetation and abiotic factors in natural and planted forest ecosystems. A non-metric multidimensional scaling (NMS) ordination technique was applied to represent forest understory vegetation among five forest communities, i.e., a dry miscellaneous forest (DMF), a sal mixed forest (SMF), a teak plantation (TP), a low-land miscellaneous forest (LMF) and a savanna area (SAV) of the Katerniaghat Wildlife Sanctuary, located in northern India. Microclimatic variables, such as photosynthetically active radiation (PAR), air temperature (AT), soil Lemperature (ST), ambient atmospheric CO2 concentration, absolute air humidity (AH), physical and chemical soil ~roperties as well as biological properties were measured. Understory species were assessed via 100 random quadrats (5 m x 5 m) in each of the five forests in which a total of 75 species were recorded encompassing 67 genera from 37 families, consisting of 32 shrubs and 43 plant saplings. DMF was the most dense forest with 34,068 understory individuals per ha of different species, whereas the lowest understory population (13,900 per ha) was observed in the savanna. Ordination and correlation revealed that microclimate factors are most important in their effect compared to ~daphic factors, on the development of understory vegetation in the various forest communities in the north of India.  相似文献   

12.
We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].  相似文献   

13.
Liu  Guancheng  Yan  Guoyong  Chang  Mengyu  Huang  Binbin  Sun  Xingyu  Han  Shijie  Xing  Yajuan  Wang  Qinggui 《European Journal of Forest Research》2021,140(5):1113-1126

In recent decades, global warming and nitrogen (N) deposition have been increasing obviously, which have led to some strong responses in terrestrial ecosystems, especially the carbon (C) cycle. The boreal forest occupies an important position in the global C cycle with its huge C storage. However, the impact of global change such as N deposition on boreal forest ecosystem C cycle has been not very clear. In order to solve this problem, the field experiment of N addition in a boreal forest has been built in the Greater Khingan Mountains of Northeast China since 2011. Four N addition gradients (0, 25, 50, 75 kg N ha?1 year?1) were set up to study the response of above- and belowground C pool to N addition. The results showed that the total forest C sequestration of low-, medium- and high-N treatments was 104.4?±?5.9, 20.2?±?2.7 and 5.3?±?0.4 g C/g N, respectively. Aboveground trees were the largest C pool, followed by soil, roots and floor C pool. Low-N increased the input of C by promoting photosynthesis. Trees of Larix gmelini increased the investment in the belowground root system and increased the belowground C pool. High-N reduced the inter-annual litter biomass and decreased litter C:N that accelerated the decomposition of litter, resulting in a reduction in the floor C pool. Low-N increased total soil respiration, while medium- and high-N inhibited heterotrophic respiration and then increased soil C sequestration. The estimation of forest C pool provides valuable data for improving the C dynamic characteristics of boreal forest ecosystem and is of great significance for us to understand the impact of climate change on the global C cycle.

  相似文献   

14.
Elevated CO(2) concentrations ([CO(2)]) affect plant water relations and photosynthesis, and the increase in atmospheric [CO(2)] over the past 100-200 years has been related to changes in stomatal density and the carbon isotope ratio (delta(13)C) in tree rings and leaves from herbarium specimens. Because many tropical trees do not produce annual growth rings and their wood is therefore difficult to date, no trends in delta(13)C of tropical trees have been reported. Wood from Cedrela odorata L. (tropical cedar) and Swietenia macrophylla King (bigleaf mahogany), which do produce annual rings, was collected from a primary rain forest in Aripuan?, Brazil (10 degrees 09' S, 59 degrees 26' W). We measured wood cellulose delta(13)C in 10-year growth increments from 37 Cedrela trees (between 11 and 151 years old in 2001) and 16 Swietenia trees (48-126 years old). A comparison of delta(13)C in cellulose of trees from different decades and of trees of different cambial ages showed that the amount of delta(13)C was largely related to the decade the wood was produced in, and not, or only to a minor extent, to tree age. Cellulose delta(13)C decreased from -26.0 to -27.3 per thousand in Cedrela and from -25.7 to -27.1 per thousand in Swietenia, with the largest changes occurring during the past 50 years. Based on these data and the trends in atmospheric [CO(2)] and delta(13)CO(2), we calculated that the internal [CO(2)] increased from about 220 to 260 ppm and that intrinsic water-use efficiency increased by 34% in Cedrela and by 52% in Swietenia. This may have implications for the water cycle and may explain the trend toward increased tree growth and turnover observed in some tropical forests.  相似文献   

15.
Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.  相似文献   

16.
We compared hydraulic architecture, photosynthesis and growth in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a shade-intolerant species, and western hemlock (Tsuga heterophylla (Raf.) Sarg.), a shade-tolerant species, to study the temporal pattern of release from suppressive shade. In particular, we sought to determine whether hydraulic architecture or photosynthetic capacity is most important in constraining release. The study was conducted at two sites with mixed stands of 10- to 20-year-old Douglas-fir and western hemlock. At one site, the stand had been thinned allowing release of the understory trees, whereas at the other site, the stand remained unthinned. Douglas-fir had lower height growth (from 1998-2003) and lower relative height growth (height growth from 1998 to 2003/height in 1998) than western hemlock. However, relative height growth of released versus suppressed trees was higher in Douglas-fir (130%) than in western hemlock (65%), indicating that, although absolute height growth was less, Douglas-fir did release from suppression. Release seemed to be constrained initially by a limited photosynthetic capacity in both species. Five years after release, Douglas-fir trees had 14 times the leaf area and 1.5 times the leaf nitrogen concentration (N (area)) of suppressed trees. Needles of released western hemlock trees had about twice the maximum assimilation rate (A (max)) at ambient [CO(2)] as needles of suppressed trees and exhibited no photoinhibition at the highest irradiances. After release, trees increased in leaf area, leaf N concentration and overall photosynthetic capacity. Subsequently, hydraulic architecture appeared to constrain release in Douglas-fir and, to a lesser extent, in western hemlock. Released trees had significantly less negative foliar delta(13)C values than suppressed trees and showed a positive relationship between leaf area:sapwood area ratio (A (L)/A (S)) and delta(13)C, suggesting that trees with more leaf area for a given sapwood area experienced a stomatal limitation on carbon gain. Nonetheless, these changes had no significant effects on leaf specific conductivities of suppressed versus released trees of either species, but leaf specific root conductance was significantly lower in released Douglas-fir.  相似文献   

17.
The light environment, photosynthetic dynamics and steady-state net photosynthetic rates of lateral branch shoots of Pseudotsuga menziesii var. glauca (Beissn.) Franco seedlings growing in the open and in the forest understory were investigated in situ. Mean incident photosynthetic photon flux density (PPFD) was 702.5 micro mol m(-2) s(-1) on open-grown branches and 52.0 micro mol m(-2) s(-1) on understory-grown branches. Mean daily durations of PPFD greater than 500, 200, and 50 micro mol m(-2) s(-1) were 8.5, 31.5, and 270.3 min, respectively, on understory-grown branches, and 559.1, 700.7, and 803.3 min, respectively, on open-grown branches. Sunflecks accounted for 32.4% of total daily photosynthetically active radiation incident on understory branches. Following 10 min at a PPFD of 50 micro mol m(-2) s(-1), the induction time required for net photosysnthesis to reach 50 and 90% of steady-state rates was shorter at a PPFD of 200 than at a PPFD of 500 micro mol m(-2) s(-1) and shorter in understory-grown branches than in open-grown branches. On a leaf area basis, dark respiration rates of understory-grown branches were lower and net photosynthetic rates were higher than those of open-grown branches exposed to low PPFD. However, at high PPFDs, understory-grown branches had lower photosynthetic rates than open-grown branches. When measurements were expressed on a leaf dry mass basis, there was no difference in dark respiration rates between understory branches and open-grown branches, but net photosynthetic rates of understory branches were equal to or higher than those of open-grown branches at all PPFDs.  相似文献   

18.
The influence of CO(2) transported in the transpiration stream on measurements of leaf photosynthesis and stem respiration was investigated. Measurements were made on trees in a temperate forest in Scotland and in a tropical rain forest in Cameroon, and on shrubs in the Sahelian zone in Niger. A chamber was designed to measure the CO(2) partial pressure in the gas phase within the woody stems of trees. High CO(2) partial pressures were found, ranging from 3000 to 9200 Pa. Henry's Law was used to estimate the CO(2) concentration of xylem sap, assuming that it was in equilibrium with the measured gas phase partial pressures. The transport of CO(2) in the xylem sap was calculated by multiplying sap CO(2) concentration by transpiration rate. The magnitude of aqueous transport in the studied species ranged from 0.03 to 0.35 &mgr;mol CO(2) m(-2) s(-1), representing 0.5 to 7.1% of typical leaf photosynthetic rates. These values strongly depend on sap pH. To examine the influence of aqueous transport of CO(2) on stem gas exchange, we made simultaneous measurements of stem CO(2) efflux and sap flow on the same stem. After removing the effect of temperature, stem CO(2) efflux was positively related to sap flow. The apparent effect on measurements of stem respiration was up to 0.7 &mgr;mol m(-2) s(-1), representing ~12% of peak stem respiration rates.  相似文献   

19.
Human-induced forest edges are common in many forest landscapes throughout the world. Forest management requires an understanding of their ecological consequences. This study addressed the responses of three ecological groups (non-forest species, secondary forest species and primary forest species) in edge soil seed banks and edge understory vegetation, and explored the relationship between the invasion of non-forest species in edge understory vegetation and the accumulation of their seeds in edge soil seed banks. The soil seed banks and understory vegetation were sampled along transects established at the edges of a continuous subtropical evergreen broad-leaved forest tract (Lithocarpus xylocarpus forest) bordering anthropogenic grasslands and three tropical seasonal rain forest fragments (Shorea wantianshuea forest) bordering fallows. Species composition in both soil seed banks and understory vegetation showed great difference among edge sites. In soil seed banks, the dominance (relative abundance and relative richness) of each ecological group did not change significantly along the edge to interior gradient. In understory vegetation, the invasion of non-forest species concentrated on the first several meters along the edge to interior gradient. The dominance of secondary forest species decreased with distance from the edge, while the dominance of primary forest species increased with distance from the edge. In forest edge zones, the invasion of a majority of non-forest species in understory vegetation lags behind the accumulation of their seeds in soil seed banks. Forest edges do not act as a good barrier for the penetration of non-forest species seeds. The lack of non-forest species in understory vegetation must then be due to conditions that are not appropriate for their establishment. Therefore, to prevent germination and survival of non-forest species further into the forest, management should focus on maintaining interior forest conditions.  相似文献   

20.
Understory vegetation is an important component in forest ecosystems. However, the effects of understory on soil properties in subtropical forests are not fully understood. We thus conducted an experimental manipulative study in two young fast-growing plantations—Eucalyptus urophylla and Acacia crassicarpa—in southern China, by removing understory vegetation in both plantations, to estimate the effects of understory vegetation on microclimate, soil properties and N mineralization. Our data showed that, after 6 months, understory removal (UR) in both plantations had greatly increased soil surface luminous intensity (90–500 cd) and temperature (0.5–0.8 °C); soil moisture was reduced in the Eucalyptus plantation but not in the Acacia plantation. Understory removal also reduced soil organic matter (SOM), but had little impact on other soil chemical properties, including total phosphorus, C/N, pH, exchangeable cations (K, Ca, Mg), available P, ande extractable NH4–N and NO3–N. We found a significant decline of soil N mineralization and nitrification rates in the 0–5 cm soils of UR in both plantations. The decline of SOM in UR may contribute to the lower N transformations rates. This study indicates that a better understanding of understory vegetation effects on soil N cycling would be beneficial to forest management decisions and could provide a critical foundation for advancing management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号