首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our studies of the chain-breaking antioxidant mechanism of natural phenols in food components, ferulic acid, a phenolic acid widely distributed in edible plants, especially grain, was investigated. The radical oxidation reaction of a large amount of ethyl linoleate in the presence of the methyl ester of ferulic acid produced four types of peroxides as radical termination products. The isolation and structure determination of the peroxides revealed that they had tricyclic structures which consisted of ethyl linoleate, methyl ferulate, and molecular oxygen. Based on the formation pathway of the products, a radical scavenging reaction occurred at the 3'-position of the ferulate radical with the four types of peroxyl radicals of ethyl linoleate. The produced peroxides subsequently underwent intramolecular Diels-Alder reaction to afford stable tricyclic peroxides.  相似文献   

2.
Phenolic compounds present in beer were shown by fluorescence spectroscopy and laser flash photolysis to deactivate both singlet- and triplet-excited states of riboflavin with bimolecular rate constants close to the diffusion control ranging from 2.8x10(9) to 1.1x10(10) M-1 s-1 and from 1.1x10(9) to 2.6x10(9) M-1 s-1, respectively. Enthalpies of activation were low (up to 33.2 kJ mol-1), and entropies of activation were positive, ranging from 17 to 92 J mol-1 K-1, as derived from temperature dependence, indicating a compensation effect. From a Stern-Volmer analysis of the singlet-excited riboflavin quenching by phenols it was found that high amounts of phenolic compounds (>0.3 M) would be needed to hinder triplet-excited riboflavin generation. On the other hand, a phenolic content of 0.36 mM is likely to quench 90% of the triplet-excited state. Phenol photodegradation was found to be complex, and using ESI-MS analysis it was not possible to identify specific photooxidation products of the phenolic compounds; only the photoproducts of riboflavin could be detected and structurally assigned. The rate of reaction of triplet-excited riboflavin with phenolic compounds in acetonitrile/citrate buffer (pH 4.6, 10 mM) is 550 times faster than the reaction with iso-alpha-acids from hops, indicating that triplet-excited quenchers such as phenols may be involved in the early steps in light-struck flavor formation in beer through radical formation. Terpenes present in herb-flavored beers were found to be nonreactive toward singlet- and triplet-excited-state riboflavin, and any protection depends on other mechanisms.  相似文献   

3.
The generation of pyrazinium radical cations during the early stages of the Maillard reaction has been previously demonstrated. In this study, the effect of food phenolic compounds [4-methylcatechol (4-MeC), (+)-catechin (CAT), and (-)-epigallocatechin-3-gallate (EGCG)] on the fate of these intermediates in Maillard model systems was investigated. Aqueous solutions containing either glyoxal + alanine (GO-A) or glycolaldehyde + alanine (GA-A) were treated with a concentration gradient of each phenolic compound, and quantitative analysis of the resulting pyrazinium radicals in these models was performed using electron paramagnetic resonance (EPR) spectroscopy. CAT and EGCG were observed to affect pyrazinium radical generation rates, in some cases either enhancing or suppressing formation depending on concentration, whereas the simple catechol (4-MeC) had no such effect. A mechanistic study was carried out by LC-MS, which suggested that under some conditions, CAT and EGCG react with imine intermediates via their A-rings, thus influencing the formation of the enaminol radical precursor and, ultimately, pyrazinium radicals. To the authors' knowledge, this is the first study demonstrating imine trapping by phenolic compounds under Maillard conditions and how such phenolic quenching reactions can alter pyrazinium radical formation.  相似文献   

4.
The effects of addition of hexamethylenetetramine (HMT) or sulfite during mashing on the polyphenol content and oxidative stability of wort and beer have been evaluated in a series of laboratory mashings and pilot brews. HMT reduced the concentration of catechin, prodelphinidin B-3, and procyanidin B-3 in wort and beer, whereas the concentration of ferulic acid was unaffected. Sulfite had only a minor effect on the concentration of phenolics in wort and beer. Addition of HMT or sulfite during mashing increased the oxidative stability of the beer slightly as judged by the tendency of formation of radicals (ESR spin trapping technique), although sensory analysis gave identical flavor acceptance scores to beers produced from untreated and HMT-treated wort and lower scores to beer from sulfite-treated wort. No difference in the oxidative stability of the differently treated sweet worts could be detected as judged by the rate of formation of radicals. HMT addition during mashing has thus been demonstrated to be a valuable experimental tool to control the level of polyphenols in wort and for producing brews with various levels of polyphenols from a single malt.  相似文献   

5.
The aim of this work was to study the effect of the prenylflavonoids xanthohumol, isoxanthohumol, and 8-prenylnaringenin on the activity and expression of the enzyme aromatase (estrogen synthase). The effect of different kinds of beer containing these prenylflavonoids was also tested. Aromatase activity was determined by measuring the release of tritiated water during the conversion of [(3)H]androstenedione to estrone. Aromatase expression was determined by RT-PCR. This assay was carried out in choriocarcinoma-derived JAR cells. The tested prenylflavonoids were able to inhibit estrogen formation, and their IC(50) values were determined, although no effect on aromatase expression was found. Lager beer, alcohol-free beer, stout beer, and xanthohumol-rich stout beer (200 microL/mL) significantly decreased aromatase activity. In conclusion, prenylflavonoids are able to modulate aromatase activity, decreasing estrogen synthesis, with relevance for the prevention and treatment of estrogen-dependent disorders such as breast cancer.  相似文献   

6.
Peroxides are an important factor in oxidative reactions in foods because their decomposition can result in formation of highly reactive free radicals. Emulsifiers such as the Brijs, Tweens, and lecithin were found to contain 4-35 micromol of peroxides/g of surfactant. Peroxide concentrations in Tween 20 micelles increased in the presence of low iron concentrations but decreased when iron concentrations were high, suggesting that iron was capable of promoting both peroxide formation and decomposition. Oxidation of alpha-tocopherol was observed in micelles high in peroxides (Tween 20) but not in micelles where peroxide concentrations were low (Brij). Transition metals accelerated the oxidation of alpha-tocopherol in Tween 20 micelles, whereas EDTA stabilized alpha-tocopherol in the presence of added Fe(2+). These results suggest that surfactant peroxides could decrease the oxidative stability of food emulsions by acting as a source of free radicals, especially in the presence of transition metals.  相似文献   

7.
Intensity of EPR spectra of stable organic free radicals, nitroxides, is decreasing with time if the radicals are dissolved in beer. The process is determined by a chemical reaction of nitroxide reduction by components naturally present in beer. Kinetics can be described as a simple irreversible first order with respect to both nitroxide and one reducing agent. Effective concentration of the reducing agent and the corresponding reaction rate constant has been determined. It is demonstrated that the nitroxide reduction is sensitive to the presence of solvent-accessible SH groups of proteins present in beer. It is proposed that quantitative analysis of reduction kinetics of small water-soluble nitroxide radicals such as TEMPO and TEMPOL can be used to assess the reducing power of beer. The effect of accelerated aging of beer achieved at elevated temperatures on nitroxide reduction kinetics is demonstrated.  相似文献   

8.
This study evaluated the potential of solid-state enzyme treatments to release insoluble bound antioxidants such as phenolic acids from wheat bran, thereby improving its extractable and potentially bioaccessible antioxidant properties including scavenging capacities against peroxyl (ORAC), ABTS cation, DPPH and hydroxyl radicals, total phenolic contents, and phenolic acid compositions. Investigated enzyme preparations included Viscozyme L, Pectinex 3XL, Ultraflo L, Flavourzyme 500L, Celluclast 1.5L, and porcine liver esterase. Results showed significant dose-dependent increases in extractable antioxidant properties for some enzyme preparations, and Ultraflo L was found to be the most efficient enzyme, able to convert as much as 50% of the insoluble bound ferulic acid in wheat bran to the soluble free form. The effect of moisture content on these solid-state enzyme reactions was also evaluated and found to be dependent on enzyme concentration. These data suggest that solid-state enzyme treatments of wheat bran may be a commercially viable post-harvest procedure for improving the bioaccessibility of wheat antioxidants.  相似文献   

9.
The effect of procyanidin solutions on superoxide anion radicals was studied with an enzymatic method and their EC(50) values were determined. A comparative study of the results suggested that the free radical scavenger potential of these phenolic compounds closely depends on their chemical and stereochemical structures. Oligomeric procyanidins were isolated in different fractions from grapes and wines by low- and high-pressure liquid chromatography. These compounds were found to be efficient free radical scavengers even for the weak concentrations in wines. Their activity in grapes or wines was much stronger than that of other commercially available natural antioxidants (such as ascorbic acid and gallic acid). The effect of tannins isolated from grapes on different radicals was analyzed according to three distinct methods: an enzymatic method for superoxide anion radicals (O(2)(*)(-)), a chemical method for the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*)), and an immunochemical method to study the scavenging activity of seed procyanidins on DNA lesions induced by the radical HO(*).  相似文献   

10.
The iso-α-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography-electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.  相似文献   

11.
The possibility that beer and other alcoholic beverages could be antimutagenic against the heterocyclic amines (HAs), a group of carcinogens produced on cooking proteinaceous foods, has been explored. In the Salmonella mutation assays, beer showed inhibitory effects against several HAs [preactivated Trp-P-1, Trp-P-2(NHOH), and Glu-P-1(NHOH)] that are directly mutagenic in bacteria. Japanese sake, red and white wines, and brandy were also effective. However, ethyl alcohol alone did not show these effects. The formation of O(6)-methylguanine by N-methyl-N'-nitro-N-nitrosoguanidine in the DNA of Salmonella YG7108 was also inhibited by beer. Nonvolatile beer components were administered orally to CDF(1) mice together with Trp-P-2. Adducts in the liver DNA were significantly decreased by the beer, as compared to those in controls fed Trp-P-2 only. Although several phenolic compounds known to be present in beer were antimutagenic toward these mutagens, their effects were very small. It was concluded that some yet to be identified component(s) of beer is (are) responsible for this antimutagenicity.  相似文献   

12.
The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe(3+) to Fe(2+), and Fe(2+) increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions and had no significant effect at pH 6 in Citrem- or Tween-stabilized emulsions on the basis of the formation of volatiles. The results indicated that phenol-iron complexes/nanoparticles were formed at pH 6.  相似文献   

13.
The disappearance of riboflavin absorbance at 445 nm from beers or model beers on light exposure is directly linked to light-struck character formation. The addition of (+)-catechin, (-)-epicatechin, tryptophol, or ascorbic acid was able to reduce, but not stop, absorbance loss or light-struck character formation in either model beer or mainstream lager that was exposed to light. When isohumulone was present in model beer, the inhibitory effect of (+)-catechin, (-)-epicatechin, or tryptophol decreased with increasing isohumulone. The spectrophotometric method used in this study is a simple and effective method for determining light-struck susceptibility.  相似文献   

14.
Beers are a source of dietary flavonoids; however, there exist differences in composition, alcohol concentration, and beneficial activities. To characterize these differences, three kinds of lager beer of habitual consumption in Spain, dark, blond, and alcohol-free, were assayed for total phenolic content, antioxidant activity, superoxide and hydroxyl radical scavenging activities, and in vitro inhibitory effect on DNA oxidative damage. Furthermore, their melanoidin content and correlation with antioxidant activity were evaluated. Dark beer contained the highest total phenolic (489 +/- 52 mg/L) and melanoidin (1.49 +/- 0.02 g/L) contents with a 2-fold difference observed when compared to the alcohol-free beer. For the three kinds of beer, the antioxidant activity measured as N,N-dimethyl-p-phenylenediamine dihydrochloride concentration was strongly correlated with the total polyphenol content (R(2) = 0.91102, p < 0.005) and with the melanoidin content (R(2) = 0.7999, p < 0.05). The results support a positive effect of beers on the protection of DNA oxidative damage, by decreasing the deoxyribose degradation, DNA scission (measured by electrophoresis), and inhibition of 8-hydroxydeoxyguanosine (8-OH-dG) formation. Furthermore, a correlation between the total melanoidin content (R(2) = 0.7309, p < 0.01) and inhibition of 8-OH-dG was observed.  相似文献   

15.
Approximately 7% of the iron associated with hemoglobin was released from the heme protein during 2 degrees C storage in washed cod muscle. EDTA (2.2 mM) neither accelerated nor inhibited hemoglobin-mediated lipid oxidation based on the formation of lipid peroxides and TBARS. This suggested that low molecular weight iron was a minor contributor to hemoglobin-mediated lipid oxidation in washed cod muscle. Ascorbate (2.2 mM) was a modest to highly effective inhibitor of hemoglobin-mediated lipid oxidation depending on which washed cod preparation was assessed. Experimental evidence suggested that the ability of residual ascorbate to breakdown accumulating lipid hydroperoxides to reactive lipid radicals can explain the shift of ascorbate from an antioxidant to a pro-oxidant. Increasing the lipid peroxide content in washed cod muscle accelerated hemoglobin-mediated lipid oxidation and decreased the ability of ascorbate to inhibit lipid oxidation. Preformed lipid peroxide content in cod muscle was highly variable from fish to fish.  相似文献   

16.
The nitrogen monoxide (NO) scavenging activity of grape seed extract (GSE) was studied in the TMA-PTIO/NOC 7 system. The procyanidin-rich (>95%) GSE showed strong NO scavenging activity in the system. The activity was found to depend on the condensation rate of cyanidin when synthetic oligomers were tested. Investigation of the NO scavenging activities of other polyphenols (catechin, epicatechin, epigallocatechin, and epigallocatechin gallate) in the TMA-PTIO/NOC 7 system revealed that gallocatechin, epigallocatechin, and epigallocatechin gallate exhibited strong activities. From the results, it was suggested that the high condensation rate of and the gallate ester moiety in procyanidin in GSE may play an important role in the NO scavenging activity. The mechanism of the NO scavenging activity of phenolic compounds such as GSE is speculated to be as follows: NO reacts with phenolic compounds directly to generate phenoxy radicals.  相似文献   

17.
Dietary phenolic antioxidants have been shown to prevent LDL modifications mediated by several physiologic oxidants including peroxynitrite. However, more recent data demonstrated that CO(2) affected the fate of peroxynitrite in biological fluids and significantly reduced peroxynitrite scavenging by polyphenols, raising doubts concerning their antioxidant activity. We found that the oxidation of LDL lipids mediated by peroxynitrite decreased in the presence of bicarbonate, while Trp oxidation and 3-nitroTyr formation increased, suggesting a redirection of peroxynitrite reactivity toward the protein moiety. We therefore evaluated the protective activity of some phenolic antioxidants (quercetin, oleuropein, resveratrol, (+)-catechin, (-)-epicatechin, tyrosol, alpha- and gamma-tocopherol, ascorbate) on peroxynitrite-mediated oxidation of LDL aromatic residues. Some of these phenols protected LDL Trp from oxidation better than ascorbate or alpha-tocopherol, although protection at 100 microM did not exceed 30-40%. However, the same phenolic antioxidants were more active in inhibiting 3-nitroTyr formation and those with a catechin structure provided significant protection (IC(50%) 40-50 microM). Red wine, a polyphenol-rich beverage, showed a protective effect comparable to that of the most active phenolic antioxidants. Direct EPR studies showed that bicarbonate significantly increased the peroxynitrite-dependent formation of O-semiquinone radicals in red wine, supporting the hypothesis that polyphenols are efficient scavengers of radicals formed by peroxynitrite/CO(2). Ascorbate was a poor inhibitor of peroxynitrite/CO(2)-induced LDL tyrosine nitration, but the simultaneous addition to the most active polyphenols halved their IC(50%). In conclusion, although cooperation with other antioxidants can further decrease the IC(50%) of polyphenolics, as demonstrated for ascorbate, their antioxidant activity appears to occur at concentrations at least 1 order of magnitude higher than their bioavailability.  相似文献   

18.
Pepsin proteolysis at pH approximately 4 resulted in a lowering of the (pseudo)peroxidase activity of metmyoglobin both at physiological pH and at meat pH, as measured by a peroxidase assay with H(2)O(2) and ABTS as substrates. In contrast, the mildly proteolyzed myoglobin had a strongly enhanced prooxidative effect on lipid oxidation in an oil in water methyl linoleate emulsion compared to native metmyoglobin, as evidenced by rates of oxygen depletion. More severe proteolysis of metmyoglobin at lower pH values near the optimum for pepsin did not result in a similar enhancement of prooxidative activity. The mildly proteolyzed metmyoglobin had spectral characteristics in agreement with a relative stabilization of the iron(II) state. On the basis of the observed effects of metal chelators, of lipophilic and hydrophilic peroxides and of radical scavengers on oxygen depletion rates, it is suggested that the increased prooxidative effect is due to radicals formed by cleavage of lipid peroxides by iron(II)/iron(III) cycling of a heme pigment with affinity for the lipid/water interface.  相似文献   

19.
Moderate consumption of beer is known to be beneficial for health. Thus, antioxidant, likely taste, and aroma properties of antho-beers made from purple wheat grain (antho-grain) were evaluated. The 2,2-diphenyl-1-picryhydrazyl free radical (DPPH*) scavenging activity, total phenolic content (TPC), oxygen radical absorbance capacity (ORAC), and phenolic acid compositions of antho-bran were also investigated. DPPH* scavenging activity at 60 min was 50.6-59.9% for control and antho-beer extracts, 15.0-54.1% for antho-bran extracts and hydrolysates. The TPC ranged from 410 to 609 mg/L, from 84 to 95 mg/L, and from 2473 to 7634 mg/kg for control (from barley malt) and antho-beer original samples, control and antho-beer extracts, and antho-bran extracts and hydrolysates, respectively. The corresponding ORAC values were 3050-4181 mg/L, 2961-3184 mg/L, and 74-213 g/kg, respectively. The major known phenolic acids comprised four types in control beer, five types in antho-beers, and seven types in antho-bran hydrolysates. Total anthocyanin content of antho-bran was up to 1160 mg/kg. Differences in likely taste and aroma were found between control and antho-beers by using electronic tongue and nose methods. Brewing materials had an effect on the antioxidant, likely taste, and aroma properties of beers; however, antho-grain may have potential as a novel brewing material.  相似文献   

20.
Plant-derived polyphenolic compounds have received much attention for their ability to sequester high-energy free radicals in a great variety of food-related and biological systems, protecting those systems from oxidative change. The ability of these compounds to scavenge free radicals has always been attributed to their phenolic functionality, from which a hydrogen atom can be easily abstracted. In this study, the cinnamates and the ubiquitous hydroxycinnamates were found to equally suppress the formation of oxidation products in wine exposed to the Fenton reaction (catalytic Fe(II) with hydrogen peroxide). Mechanistic investigations led to the unexpected discovery that the α,β-unsaturated side chain of cinnamic acids could efficiently trap 1-hydroxyethyl radicals, representing a newly discovered mode of antioxidant radical scavenging activity for these broadly occurring compounds in a food system. The proposed pathway is supported by prior fundamental studies with radiolytically generated radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号