首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compared the metabolic responses of leaves and roots of two Eucalyptus globulus Labill. clones differing in drought sensitivity to a slowly imposed water deficit. Responses measured included changes in concentrations of soluble and insoluble sugars, proline, total protein and several antioxidant enzymes. In addition to the general decrease in growth caused by water deficit, we observed a decrease in osmotic potential when drought stress became severe. In both clones, the decrease was greater in roots than in leaves, consistent with the observed increases in concentrations of soluble sugars and proline in these organs. In roots of both clones, glutathione reductase activity increased significantly in response to water deficit, suggesting that this enzyme plays a protective role in roots during drought stress by catalyzing the catabolism of reactive oxygen species. Clone CN5 has stress avoidance mechanisms that account for its lower sensitivity to drought compared with Clone ST51.  相似文献   

2.
The tropical conifer Callitris intratropica (Cupressaceae) produces clear annual growth rings, and has been shown to be potentially useful for understanding past climate variability in northern Australia. As climate patterns in this region become less predictable, an understanding of plant responses to different weather patterns is of importance. In this paper, we examine tree water relations using a parameter here called tree water deficit (ΔD), determined from de-trended stem size variability in densely grown ('grove') and isolated trees. This parameter provides an integrated measure of the trees' response to water supply and demand under constantly changing environmental conditions. The work, conducted over 12 months, found that daily variation in tree water deficit was determined mainly by soil water availability, but temperature and relative humidity contributed more to the variability over some periods. Isolated and grove trees exhibited quite distinct patterns of ΔD development during the year, but particularly during the transition between the dry and wet seasons. The results of this work suggest that the dendrochronological interpretation of tree rings in the context of strongly seasonal water availability should incorporate an understanding of the development of seasonal drought in isolated trees compared with trees experiencing strong intra-specific competition. Different responses based on the ecological situations of the trees will affect their patterns of stem growth, and ultimately the climatic information that is incorporated in ring width variability.  相似文献   

3.
Gas exchange, tissue water relations, and leaf/root dry weight ratios were compared among young, container-grown plants of five temperate-zone, deciduous tree species (Acer negundo L., Betula papyrifera Marsh, Malus baccata Borkh, Robinia pseudoacacia L., and Ulmus parvifolia Jacq.) under well-watered and water-stressed conditions. There was a small decrease (mean reduction of 0.22 MPa across species) in the water potential at which turgor was lost (Psi(tlp)) in response to water stress. The Psi(tlp) for water-stressed plants was -1.18, -1.34, -1.61, -1.70, and -2.12 MPa for B. papyrifera, A. negundo, U. parvifolia, R. pseudoacacia, and M. baccata, respectively. Variation in Psi(tlp) resulted primarily from differences in tissue osmotic potential and not tissue elasticity. Rates of net photosynthesis declined in response to water stress. However, despite differences in Psi(tlp), there were no differences in net photosynthesis among water-stressed plants under the conditions of water stress imposed. In A. negundo and M. baccata, water use efficiency (net photosynthesis/transpiration) increased significantly in response to water stress. Comparisons among water-stressed plants showed that water use efficiency for M. baccata was greater than for B. papyrifera or U. parvifolia. There were no significant differences in water use efficiency among B. papyrifera, U. parvifolia, A. negundo, and R. pseudoacacia. Under water-stressed conditions, leaf/root dry weight ratios (an index of transpiration to absorptive capacity) ranged from 0.77 in R. pseudoacacia to 1.05 in B. papyrifera.  相似文献   

4.
采用盆栽试验研究干旱胁迫条件下5种树种侧柏、苦楝、栾树、黄连木、乌桕1年实生苗的抗旱生理生化指标丙二醛(MDA)、电导率(EC)、叶绿素(Chl.)、游离脯氨酸(Pro)、过氧化物酶活性(POD)等的变化。在研究生理生化指标与抗旱性关系的基础上,采用隶属函数法对上述指标进行综合分析,得出其抗旱能力从大到小的顺序为:侧柏、栾树、黄连木、乌桕、苦楝,这一结果与5种植物的实际表现一致。  相似文献   

5.
New Forests - The increase in the frequency and severity of extreme weather events affects populations of tree species. As a result, many forests around the world have suffered massive mortality...  相似文献   

6.
We applied a semi-mechanistic model of fresh matter accumulation to peach fruit during the stage of rapid mesocarp development. The model, which is based on simple hypotheses of fluid flows into and out of the fruit, assumes that solution flow into the fruit increases with fruit weight and transpiration per unit weight, and decreases with the maximum daily shrinkage of the trunk, which was used as an indicator of water stress. Fruit transpiration was assumed to increase with fruit size and with radiation. Fruit respiration was considered to be related to fruit growth and to temperature. The model simulates variability in growth among fruits according to climatic conditions, degree of water stress and weight of the fruit at the beginning of the simulation. We used data obtained from well-watered and water-stressed trees grown in containers to estimate model parameters and to test the model. There was close agreement between the simulated and measured values. A sensitivity analysis showed that initial fruit weight partly determined the variation in growth among fruits. The analysis also indicated that there was an optimal irradiance for fruit growth and that the effect of high global radiation on growth varied according to the stage of fruit development. Water stress, which was the most important factor influencing fruit growth, rapidly depressed growth, particularly when applied late in the season.  相似文献   

7.
Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.  相似文献   

8.
The physiological basis of drought resistance in Ziziphus rotundifolia Lamk., which is an important, multipurpose fruit tree of the northwest Indian arid zone, was investigated in a greenhouse experiment. Three irrigation regimes were imposed over a 34-day period: an irrigation treatment, a gradual drought stress treatment (50% of water supplied in the irrigation treatment) and a rapid drought stress treatment (no irrigation). Changes in gas exchange, water relations, carbon isotope composition and solute concentrations of leaves, stems and roots were determined. The differential rate of stress development in the two drought treatments did not result in markedly different physiological responses, but merely affected the time at which they were expressed. The initial response to decreasing soil water content was reduced stomatal conductance, effectively maintaining predawn leaf water potential (Psi(leaf)), controlling water loss and increasing intrinsic water-use efficiency, while optimizing carbon gain during drought. Carbon isotope composition (delta13C) of leaf tissue sap provided a more sensitive indicator of changes in short-term water-use efficiency than delta13C of bulk leaf tissue. As drought developed, osmotic potential at full turgor decreased and total solute concentrations increased in leaves, indicating osmotic adjustment. Decreases in leaf starch concentrations and concomitant increases in hexose sugars and sucrose suggested a shift in carbon partitioning in favor of soluble carbohydrates. In severely drought-stressed leaves, high leaf nitrate reductase activities were paralleled by increases in proline concentration, suggesting an osmoprotective role for proline. As water deficit increased, carbon was remobilized from leaves and preferentially redistributed to stems and roots, and leaves were shed, resulting in reduced whole-plant transpiration and enforced dormancy. Thus, Z. rotundifolia showed a range of responses to different drought intensities indicating a high degree of plasticity in response to water deficits.  相似文献   

9.
We evaluated drought resistance mechanisms in a drought-tolerant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. based on the responses to drought of some physiological, biophysical and morphological characteristics of container-grown plants, with particular emphasis on root growth and hydraulic properties. Water loss in excess of that supplied to the containers led to a general decrease in growth and significant reductions in leaf area ratio, specific leaf area and leaf-to-root area ratio. Root hydraulic conductance and leaf-specific hydraulic conductance decreased as water stress became more severe. During the experiment, the drought-resistant CN5 clone maintained higher leaf water status (higher predawn and midday leaf water potentials), sustained a higher growth rate (new leaf area expansion and root growth) and displayed greater carbon allocation to the root system and lower leaf-to-root area ratio than the drought-sensitive ST51 clone. Clone CN5 possessed higher stomatal conductances at moderate stress as well as higher hydraulic conductances than Clone ST51. Differences in the response to drought in root biomass, coupled with changes in hydraulic properties, accounted for the clonal differences in drought tolerance, allowing Clone CN5 to balance transpiration and water absorption during drought treatment and thereby prolong the period of active carbon assimilation.  相似文献   

10.
We analyzed 14C, 13C and 18O isotope variations over a 50-year period in tree rings of Quercus ilex L. trees growing at a natural CO2 spring in a Mediterranean ecosystem. We compared trees from two sites, one with high and one with low exposure to CO2 from the spring. The spring CO2 is free of 14C. Thus, this carbon can be traced in the wood, and the amount originating from the spring calculated. The amount decreased over time, from about 40% in 1950 to 15% at present for the site near the spring, indicating a potential difficulty in the use of natural CO2 springs for elevated CO2 research. The reason for the decrease may be decreasing emission from the spring or changes in stand structure, e.g., growth of the canopy into regions with lower concentrations. We used the 14C-calculated CO2 concentration in the canopy to determine the 13C discrimination of the plants growing under elevated CO2 by calculating the effective canopy air 13C/12C isotopic composition. The trees near the spring showed a 2.5 per thousand larger 13C discrimination than the more distant trees at the beginning of the investigated period, i.e., for the young trees, but this difference gradually disappeared. Higher discrimination under elevated CO2 indicated reduced photosynthetic capacity or increased stomatal conductance. The latter assumption is unlikely as inferred from the 18O data, which were insensitive to CO2 concentration. In conclusion, we found evidence for a downward adjustment of photosynthesis under elevated CO2 in Q. ilex in this dry, nutrient-poor environment.  相似文献   

11.
为了探讨6种野生花卉的耐旱机理,采用BP3400精密电子天平,研究了在干旱胁迫条件下6种野生耐旱花卉苗木蒸腾耗水的变化规律及其与耐旱性的关系。结果表明:随着土壤干旱程度的加重,各苗木的单株蒸腾耗水量和蒸腾耗水速率逐渐下降,在对照、胁迫5d、暂时萎蔫和永久萎蔫这4个时段单株蒸腾耗水量的平均值由大到小排序为叶底珠栓翅卫矛木半夏南蛇藤孩儿拳头蚂蚱腿子,蒸腾耗水速率的平均值由大到小排序为叶底珠蚂蚱腿子栓翅卫矛南蛇藤木半夏孩儿拳头;叶底珠和蚂蚱腿子是耗水较多的树种,孩儿拳头是耗水较少的树种,栓翅卫矛、南蛇藤和木半夏的耗水量接近且居中;各苗木蒸腾耗水量的连日变化呈波动的递减趋势,与气温、空气相对湿度的波动一致;单株蒸腾耗水量和蒸腾耗水速率的大小与耐旱性强弱之间没有必然的关系,这表明了不同苗木的耐旱性具有多样化的特点。  相似文献   

12.
水分胁迫下抗旱剂对南方6种林木幼苗光合作用的影响   总被引:4,自引:0,他引:4  
采用PEG渗透胁迫处理,测定了6种针阔叶树幼苗在胁迫下光合速率的变化,并对乙醇胺的抗旱效果进行了比较。结果表明:在相同胁迫强度和时间下,各树种的光合速率顺序为:银杏>苦楝>刺槐;马尾松>火炬松>水杉。0.2%的乙醇胺处理均能明显提高胁迫下各树种的光合速率,其中尤以对刺槐,水杉效果最为突出。  相似文献   

13.
  • ? Five temperate broad-leaved tree species were compared with respect to their water consumption strategies under ample and restricted water supply. We measured synchronously leaf conductance (g L) in the sun canopy, xylem sap flux (J s) and leaf water potential (predawn, ψpd and noon, ψnoon) in adult trees in a mixed stand and related them to the fluctuations in vapor pressure deficit (D) and soil moisture.
  • ? Maximum g L was particularly high in F. excelsior, C. betulus and T. cordata and revealed a higher D sensitivity. ψpd remained constantly high in A. pseudoplatanus, C. betulus and F. excelsior, but decreased in T. cordata and F. sylvatica with decreasing soil moisture.
  • ? J sddecreased linearly with decreasing soil matrix potential in all species except for F. excelsior. Apparent hydraulic conductance in the soil-to-leaf flow path (L c) was higher in A. pseudoplatanus than in the other species.
  • ? F. sylvatica maintained a low maximum g L and reduced J sd markedly upon drought, but faced severe decreases in ψpd and ψnoon. F. excelsior represents an opposite strategy with high maximum g L and stable ψpd.
  • ? The species drought sensitivity increases in the sequence F. excelsior < C. betulus < T. cordata < A. pseudoplatanus < F. sylvatica.
  •   相似文献   

    14.
    Tinus RW 《Tree physiology》1996,16(9):795-799
    Container-grown quiescent Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) seedlings were air dried to plant water potentials of -0.2, -2.2 or -3.8 MPa (unstressed, moderate, and severe stress treatments, respectively). Trees from each treatment were either placed in root mist chambers held at 10, 20, or 28 degrees C for 28 days and root growth potential (RGP) and plant water potential (PWP) measured weekly, or potted in a 1/1 mix of peat and vermiculite, watered only once, and height growth and survival recorded after 10 weeks in an unheated greenhouse. Root growth potential of unstressed trees was greater than that of moderately stressed trees at all temperatures. Root growth potential of severely stressed trees was zero. Predawn plant water potentials of unstressed and moderately stressed trees were initially high, fell to -0.5 to -0.8 MPa, and then increased. Predawn plant water potential of severely stressed trees declined continuously over the 28-day experiment. Survival and height growth of the severely stressed trees were reduced compared to the unstressed and moderately stressed trees. Among the root growth potential measurements, RGP measured after 7 days at 10 degrees C was most sensitive to drought stress history and revealed differences in vigor that were not apparent from the survival and height growth data.  相似文献   

    15.
    This paper reviews research on the effects of ozone on stomatal behavior, and draws attention to the direct link between stomatal function and air pollution. Contradictory results concerning the effects of air pollutants on stomatal activity are attributed to the use of univariate statistical treatments of data. Alternative experimental methods that subject stomata to a functional test are described. These methods verify the hypothesis that ozone predisposes trees to drought stress. It is proposed that ozone directly attacks the walls of guard and subsidiary cells, leading to impairment of the sensory mechanism of the stomata.  相似文献   

    16.

    Context

    In the context of a probable increase in intensity and frequency of extreme summer drought events, a better understanding of the key processes involved in water relations is needed to improve the theoretical foundations of predictive process-based models.

    Aims

    This paper aims to analyse how temperate deciduous trees cope with water shortage.

    Methods

    The exceptional summer drought of 2003 in Europe provided an opportunity to monitor stomatal conductance and twig water potential in European beech (Fagus sylvatica L.) at predawn and midday and to analyse variations with respect to leaf height within the canopy. By comparing our field measurements of twig water potential to values found in the literature, we confirmed the strong impact of soil water shortage on crown water relations.

    Results

    This paper shows that (1) the vertical gradient of stomatal conductance within the crown disappeared under extreme soil water depletion; (2) at maximum drought intensity, predawn twig water potential (ψ pd) reached ?2.3 MPa at a height of 14 m in the crown and ?2.0 MPa at a height of 10 m. The significant differences in ψ pd between the two measurement heights in the canopy may be due to night transpiration; (3) there was a close relationship between predawn twig water potential and relative extractable soil water; (4) as drought conditions intensified, there was a close relationship between canopy radiation interception and predawn water potential, as estimated daily from relative extractable soil water.  相似文献   

    17.
    Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc.,Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to soecies.  相似文献   

    18.
    水分和热胁迫处理对三个针叶树种苗木叶绿素荧光的影响   总被引:7,自引:0,他引:7  
    本文测定了三个周期水分和热胁迫处理对杉木、马尾松和北美乔柏苗木叶绿素荧光的影响。结果表明:三个树种的可变荧光与最大荧光之比值(Fv/Fm)对水分胁迫的反应不同。水分胁迫处理后北美乔柏的(Fv/Fm)值大大降低,而杉木的(Fv/Fm)值只有轻微下降,马尾松的(Fv/Fm)值则没有显著变化。实验结果还表明:热胁迫处理对三个树种的(Fv,Fm)值都有显著影响。就三个水分和热胁迫周期而言,研究发现:在每个水分和热胁迫周期结束时测定的杉木和马尾松(Fv/Fm)值没有显著差异。但随着胁迫时间的延长,北美乔柏的(Fv/Fm)值显著下降。图4表4参20。  相似文献   

    19.
    We examined the extent of osmotic adjustment and the changes in relative water content (RWC) and transpiration rate (i.e., relative stomatal function) that occur in water-deficit-conditioned 6-year-old Thuja occidentalis L. (eastern white cedar) trees in response to a severe drought. Trees conditioned by successive cycles of mild or moderate nonlethal water stress (conditioning) and nonconditioned trees were exposed to drought (i.e., -2.0 MPa predawn water potential) to determine if water deficit conditioning enhanced tolerance to further drought stress. Following drought, all trees were well watered for 11 days to evaluate how quickly osmotic potential, RWC and transpiration rate returned to preconditioning values. Both nonconditioned trees and mildly conditioned trees exhibited similar responses to drought, whereas moderately conditioned trees maintained higher water potentials and transpiration rates were 38% lower. Both conditioned and nonconditioned trees exhibited a similar degree of osmotic adjustment (-0.39 MPa) in response to drought relative to the well-watered control trees. The well-watered control trees, nonconditioned trees and mildly conditioned trees had similar leaf RWCs that were about 3% lower than those of the moderately conditioned trees. Following the 11-day stress relief, there were no significant differences in osmotic potential between the well-watered control trees and any of the drought-treated trees. Daily transpiration rates and water potential integrals (WPI) of all drought-treated trees approached those of the well-watered control trees during the stress relief period. However, the relationship between cumulative transpiration and WPI showed that previous exposure to drought stress reduced transpiration rates. Leaf RWC of the moderately conditioned trees remained slightly higher than that of the nonconditioned and mildly conditioned trees.  相似文献   

    20.
    In the context of climate change, an increased frequency of drought stresses might occur at a regional scale in boreal forests. To assess photosynthetic responses to drought treatment, seedlings of 12 open-pollinated families of white spruce (Picea glauca (Moench) Voss) differing in their growth performance were grown in a controlled environment. Gas exchange and chlorophyll fluorescence parameters as well as shoot xylem water potential (WP) were measured for 21 successive days after watering was stopped. Net photosynthesis decreased as stomatal conductance decreased. Net photosynthesis was not affected by drought until WP reached –2.0 MPa when stomata were closed. Initial fluorescence (F and basic fluorescence after induction (F00) were not affected by drought. A progressive decrease in maximal (Fm) and variable fluorescences (Fv), maximum photosystem II (PS II) efficiency (Fv = Fm), effective quantum yield of PS II (FII), photochemical efficiency of open PS II (Fp), and photochemical quenching (qP) was observed at WP < - 1.0 MPa, whereas non-photochemical quenching (qN) remained high throughout the drought treatment. White spruce families with inferior growth performance showed higher values of Fm, Fv, Fv = Fm, Fp, and qN at WP< - 2.0MPa. The results indicated that chlorophyll fluorescence variables can be used as drought markers in relation to present or predicted climate conditions. These could be used for selecting planting stock adapted to drought periods or dry environments. These markers showed that slow-growing genotypes are better adapted to drought conditions than intermediate or fast-growing genotypes in present and predicted drought conditions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号