首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
High levels of mortality after installation can limit the long-term benefits associated with urban tree planting initiatives. Past planting projects funded by the Florida Forest Service were revisited two to five years after installation to document tree survival and growth and assess program success. Additionally, various site (e.g., soil compaction, installed irrigation) and tree-related (e.g., species, nursery production method, initial size at planting) factors were noted to assess their impact on tree growth. Results show that the overall establishment rate for the 26 sites (n = 2354 trees) was high, with 93.6% of trees alive at the time of final inspection. On-site irrigation played a significant role in tree survival and growth, especially for Magnolia grandiflora (97.7% survival on irrigated sites; 73.8% survival on non-irrigated sites). Findings from this work validate the effectiveness of current program policies which include maintenance of tree quality within the first year after planting, and offer further insights regarding the impacts of season of planting and initial size of nursery stock on plant growth and development.  相似文献   

2.
Manually measuring tree root characteristics can be inefficient and limiting. To test the application of a new digital technology in tree root architecture research, root systems from 29 green ash (Fraxinus pennsylvanica 'Patmore') trees were unearthed, cleaned, and photographed to create 3D models using structure from motion (SfM) photogrammetry. Three root segments from each root system were selected, marked, and removed after being photographed. The volumes of these segments (derived from the 3D models) were compared against volumes measured using water displacement. In addition to the root segments, model and water displacement volumes were compared for three complete root systems. Regression analysis showed a strong linear relation between the two volumes measurements (adjusted R2 = 0.97 for the root segment data). The RMSE for the root segment volume estimates was 40.37 cm3 (12.3%), with a bias of 17.2 cm3 (5.3%). This error rate was similar to previous published work and suggests the technology used may allow researchers to improve efficiency in data capture, add new measurements (i.e., surface area) to their modeling efforts, and digitally preserve tree root systems for future study.  相似文献   

3.
Trees in cities are often viewed as objects of attraction. Previous literature suggests that some tree attributes, such as height, canopy size and leaf color, are the driving factors for a tree’s aesthetic quality. However, the tree attributes used greatly vary among researchers who do not reach an agreement on which attributes affect people’s preferences. Also, differences of trees’ aesthetic quality in different seasons are poorly understood. To fill these gaps, twenty tree species were photographed in the exact same location in different seasonal stages, their aesthetic quality was judged by the general public using semi-quantitative response variable, and 11 tree attributes were abstracted and quantified to check their effect on the perception of trees’ beauty. Statistical analysis showed that the tree possessing the characteristics of higher branching trunk, dense canopy and moderate length of leaves (about 11 cm) was given a high preference rank. Although there is no significant difference among preference scores in four seasons, the tree ranked a high preference in spring or summer was more likely to indicate an intense fluctuation of preference among four seasons. The practical implication is that more tree species with the preferred attributes should be used not only for aesthetic appeal but also for ecological benefits. For the contrast of aesthetic quality in different seasons, the trees which rank as high preference in spring or summer should be planted.  相似文献   

4.
Populus euphratica (P. euphratica) grows in the water-limited Tarim River Basin in spatially heterogeneous open ecosystems; thus, efforts to quantify the leaf area index (LAI) with optical instruments developed for homogeneous closed canopies have a high probability of failure. In this study, we explored methods for designing an acceptable sampling scheme to quantify the tree LAI for open P. euphratica canopies in arid areas. Field data were collected from three 30 m × 30 m plots and one 100 m × 100 m plot. We compared three indirect methods, i.e. i) allometry, ii) LAI-2000 canopy analyser, iii) Tracing Radiation and Architecture of Canopies (TRAC), and a new semi-direct method combining leaf density and crown volume (SDDV) method for quantifying the isolated tree and canopy LAI of a P. euphratica forest. We also analysed the effects of random and grid sampling designs on the accuracy of the LAI estimates obtained with the LAI-2000. The results showed that the allometric method is applicable to isolated trees with regular shapes; however, because the LAI of P. euphratica was calculated from an allometric equation based on the basal area (at 1.3 m), the allometric equation is prone to failure if the basal area is beyond a specific range. Because there are no significant differences in the plot size between the allometric and the SDDV method predictions, the proposed SDDV method can be used as an alternative for field measurements. The combination of LAI-2000 and TRAC is found to be more reliable than TRAC only, and the field view of the LAI-2000 sensor and the clumping index are important factors for sparse vegetation LAI retrieval. The results from sampling optimization showed that for the LAI-2000 instrument, the best sampling method is grid sampling, and the sampling interval should not be less than 20 m. For random sampling scheme, the number of sampling points in a 100 m × 100 m plot should be greater than 86 with a coefficients of variation of 15% and an allowable error (AE) of 0.15 m2 m−2, respectively.  相似文献   

5.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

6.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

7.
Green infrastructure approaches leverage vegetation and soil to improve environmental quality. Municipal street trees are crucial components of urban green infrastructure because they provide stormwater interception benefits and other ecosystem services. Thus, it is important to understand the patterns and drivers of structural heterogeneity in urban street tree assemblages. In this study, we compared the forest structure of street trees across nine communities along both geographic and demographic gradients in metropolitan Cincinnati, Ohio, USA. Specifically, we used a two-part statistical model to compare both the proportion of sampled street segments containing zero trees, and basal area magnitude for street segments with trees. We made community-scale comparisons based on street tree management, socioeconomics, and geographic setting. Then, using modeled stormwater interception estimates from i-Tree Streets, we investigated the implications of heterogeneity in street tree assemblages for stormwater interception benefits. The forest structure of street trees varied across communities in relation to management practices, namely participation in the Tree City USA program. As a consequence of this structural difference, we observed a stark discrepancy in estimated stormwater interception between Tree City USA participants (128.7 m3/km street length) and non-participants (59.2 m3/km street length). While street tree assemblages did not vary by community poverty status, we did find differences according to community racial composition. In contrast to previous research, basal area was greater in predominantly black (i.e., African American) and racially mixed communities than in predominantly white communities. We did not observe structural differences across geographic strata. This research underscores the importance of proactive management practices for increasing the forest structure of street trees. Our findings regarding socioeconomics and geographic setting contrast previous studies, suggesting the need for continued research into the drivers of structural heterogeneity in street tree assemblages.  相似文献   

8.
The urban forest provides valuable ecosystem services for enhancing human well-being. Its structure and composition determine the quantity and quality of these services. There has been little research on the heterogeneity in structure and composition of urban forests in the Australasian region, especially in the centre of a highly dynamic and rapidly urbanizing city. This paper quantifies the structure and the composition of the urban forest of Melbourne, Australia's city centre. The effects of land tenure and land use on the heterogeneity of canopy cover, tree density and canopy size were explored. Species and family composition by land use, land ownership and street type were also analysed using the Shannon–Wiener and Jaccard similarity indices. Most of the canopy cover in the city centre is located on public land and is unevenly distributed across the municipality. The mean canopy cover (12.3%) is similar to that found for whole city studies around the world, which often include peri-urban forests. Similarly to other cities, structure varied across different land uses, and tree size, density and cover varied with land tenure and street type. The diversity index shows that the urban forest is rich in species (H = 2.9) and is dominated by native species. Improving the distribution, and increasing tree cover and variety of species will result in a more resilient urban centre, able to provide multiple ecosystem services to their residents and its large population of visitors and workers. The study of the urban centre provides further understanding of compact city morphologies, and allows inter-city comparison independent of the size.  相似文献   

9.
Increasing use of recycled water that is often high in salinity warrants further examination of irrigation practices for turfgrass health and salinity management. A study was conducted during 2011–2012 in Riverside, CA to evaluate the response of perennial ryegrass (Lolium perenne L.) ‘SR 4550’ turf to varying quality and quantity of irrigation water. A modified line-source sprinkler irrigation system provided a salinity gradient (ECw ∼0.6–4.2 dS m−1) in between lines. Irrigation was scheduled in four separate irrigation zones perpendicular to the irrigation lines according to 80, 100, 120, and 140% ETo. Changes in turf quality (R2 = 0.30***), were primarily driven by the number of days that the area had been irrigated with saline water. When data were separated by irrigation amount, both time and water quality accounted for 54% and 46% of the variability (P < 0.001) in quality and cover, respectively at 80% ETo. A model was created to quantify decline in turf quality in relationship to %ETo replacement and salinity accumulation in the rootzone (R2 = 0.57). Our results suggest that perennial ryegrass requires irrigation scheduling at 140% ETo, irrigation water quality below ECw ∼1.7 dS m−1, and ECe below 3.8 dS m−1 to maintain acceptable quality for 442 d in Riverside, CA.  相似文献   

10.
Greening of shopping centre parking lots is a potentially important strategy that can contribute to urban carbon mitigation efforts, improve aesthetics and the shopping experience of consumers, whilst adding to urban biodiversity. Twenty-eight shopping centre parking lots in six Eastern Cape urban centres, South Africa, were sampled to determine tree species composition, density and annual carbon sequestration potential. The best case parking lot found during the study was used as a benchmark to display the difference between current tree density and above-ground carbon stocks relative to the potential optimum. The highest tree density was 66 trees ha?1, whereas the average density across all sampled parking lots was less than half that (27.2 ± 22.6 trees ha?1). The average annual carbon sequestration potential per parking lot was 1390 ± 2503 kg ha?1. Planting density was positively related to annual sequestration rates, whilst parking lot age and the mean annual rainfall of the town had no influence. Mean tree species richness per parking lot was 2.3 ± 1.8 species, with a positive relationship to parking lot size, but not to mean annual rainfall of the site. The majority of trees (62.5%) in parking lots were alien species, although newer parking lots had significantly greater proportions of indigenous species. There was no difference in mean annual carbon sequestration rate per tree between indigenous and alien trees species. Low tree densities and small parking lot areas constrained the potential for earning carbon credits from trees in parking lots. Nonetheless, planners and designers need to be more aware of the potential contribution of trees towards urban sustainability.  相似文献   

11.
Volatile organic compounds (VOC) are emitted by many plants. In this study, sixty common plant species of the Vidarbha region of Maharashtra, India were examined for VOC (isoprene and monoterpene) emissions. Plant species VOC emission rates ranged from undetectable to 75.2 μg g?1 h?1. Dalbergia sissoo exhibited a maximum VOC emission rate of 75.2 μg g?1 h?1. Ozone forming potentials (OFP) of the sixty plant species were also estimated using the method of Benjamin and Winer (1998). Maximum ozone forming potential of 77 g O3 (tree)?1 d?1 was observed in the case of Mangifera indica. Out of 60 species, 26 species (43.3%) had low OFP (less than 1 g O3 (tree)?1 d?1), 18 species (30%) had medium OFP (less than 1–10 g O3 (tree)?1 d?1) and 16 species (26.7%) had high OFP (more than 10 g O3 (tree)?1 d?1).  相似文献   

12.
We studied the spatial distribution of saplings in the vicinity of other saplings and mature trees in heavily worn urban forests. Our aim was to identify favorable microsites for saplings to regenerate under different levels of wear. We hypothesized that these safe microsites were situated close to tree trunks that might offer shelter from trampling caused by humans and their pet dogs. The distribution of saplings was explored at 0.1–0.6 m to the nearest sapling and 0.1–2 m to the nearest mature tree. Sorbus aucuparia was the most abundant sapling species, followed by Populus tremula, Betula pubescens and Picea abies. These species all tended to cluster with their conspecific saplings and were generally randomly distributed with respect to mature trees. Saplings of S. aucuparia and P. tremula favored growing close to mature P. abies (already at 0.4–0.8 up to 2 m from the trunk base, respectively) and S. aucuparia trees (at 0.2–0.4 m up to 2 m). Betula sp. and Acer platanoides grew close to Pinus sylvestris trees. Furthermore, with increased levels of wear, saplings clustered more likely together and close to tree trunks. The results are contrary to the gap regeneration hypothesis known from rural unworn forests where saplings often grow in canopy gaps. We suggest the idea of a ‘sheltering group’, i.e. tree groups and thickets of densely growing conspecific saplings, for the maintenance of regeneration of saplings and other vegetation in heavily worn recreational forests. Since urban forestry may strongly affect the existence and spatial location of a high variety of microhabitats, small-scale spatial exploration is needed to identify microsites that offer opportunities for natural regeneration under heavy recreational use. To maintain natural regeneration and the survival of saplings in worn urban forests, we recommend microhabitat-level species-specific forest management.  相似文献   

13.
This paper presents research that was undertaken to determine whether planting deciduous trees, using intensive tree planting schemes, on vacant and underutilized urban land provides significant hydrologic benefits. This work contributes to an ongoing discussion on how to use vacant and underutilized land productively, and may be important to land use decision-makers, whose policies support the use of green infrastructure for stormwater management. Tree growth parameters for four monoculture planting schemes were modeled (all trees had a 50.8 mm caliper at planting) and included (i) 450 Ginkgo biloba, (ii) 92 Platanus × acerifolia, (iii) 120 Acer saccharinum, and (iv) 434 Liquidambar styraciflua, on a 1.6-acre parcel. i-Tree Hydro (formerly UFORE-Hydro) was used to derive a simplified Microsoft Excel-based water balance model to quantify the canopy interception potential and evaporation, based on 7 years (2002–2008) of historical hourly rainfall and mean temperature data in Hamilton, Ontario, Canada. This study revealed that three of the species responded similarly, while one species (L. styraciflua) performed significantly better with respect to total canopy storage potential and evaporation, capturing and evaporating 2.9 m3/tree over the 7 years analyzed, or 1280 m3 for the total tree stand of 434 trees. The analyses presented herein demonstrate that the tree canopy layer was able to intercept and evaporate approximately 6.5%–11% of the total rainfall that falls onto the crown across the 7 years studied, for the G. biloba, P. × acerifolia and A. saccharinum tree stands and 17%–27% for the L. styraciflua tree stand. This study revealed that the rate at which a species grows, the leaf area index of the species as it matures, and the total number of trees to be planted need to be determined to truly understand the behavior and potential benefits of different planting schemes; had the mature leaf area been used as the sole indicator of the stormwater attenuating potential for each species, the A. saccharinum would have been the selected species. Also, had attenuation and evaporation per unit of tree been the only measurement reported, the P. × acerifolia stand would have been deemed the best performing tree, attenuating and evaporating 8.1 m3/tree. While the actual values presented herein may be uncertain because of a lack of locally-derived tree growth models, the approach described warrants further investigation.  相似文献   

14.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

15.
This paper presents a method that allows sorting of tree and shrub species according to their suitability for planting in urban areas of Madrid (Spain). Suitability was determined from a weighted index for each species according to the severity of damage (biotic, abiotic, and anthropogenic; stem wounds are the main problem in trees, while dead plants are the most important problem in shrubs, seasonal flowers, and vines) and to risk, which was obtained from a new measure, observed Species per Green Area per Year (SAYs). The greater the number of damaged SAYs, the less suitable a species was considered for outdoor planting. For this purpose, 49 green areas corresponding to 141 ha were sampled during 2005–2008. The tree species least recommended for planting include Robinia pseudoacacia, Ulmus sp., Acer negundo, Platanus × hybrid, Populus Boolleana. The shrubs least recommended for planting are Nerium oleander, Cotoneaster sp., Euonymus europaeus, Pyracantha coccinea, and Pittosporum tobira. Statistical analysis reveals that native species have a lower percentage of damaged SAYs than non-native species.  相似文献   

16.
Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental data reveal that trees in 86 Canadian cities removed 16,500 tonnes (t) of air pollution in 2010 (range: 7500–21,100 t), with human health effects valued at 227.2 million Canadian dollars (range: $52.5–402.6 million). Annual pollution removal varied among cities and ranged up to 1740 t in Vancouver, British Columbia. Overall health impacts included the avoidance of 30 incidences of human mortality (range: 7–54) and 22,000 incidences of acute respiratory symptoms (range: 7900–31,100) across these cities.  相似文献   

17.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

18.
《Scientia Horticulturae》2001,88(4):277-287
In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability were investigated. The growth of shoot tip cultures on agar MS medium containing 2.0 mg l−1 BA was greater than that of similar cultures in liquid MS medium with the same BA concentration. In liquid medium, the combinations of 0.5, 1.0, or 2.0 mg l−1 BA with 0.05 mg l−1 NAA tended to enhance the growth of the cultures. The efficiency of tetraploid induction was assessed by treating shoot tip explants on agar or in liquid MS medium containing 2.0 mg l−1 BA, 0.05 mg l−1 NAA, and 0.2% (w/v) colchicine for 4, 8, 12, and 14 days. The total number of tetraploids induced on solid medium was 18, but only five in liquid medium. On both media, the colchicine treatment for 8 days gave the maximum level of tetraploid induction. Therefore, it was found that the treatment of shoot tip explants on agar medium containing 2.0 mg l−1 BA, 0.05 mg l−1 NAA, and 0.2% (w/v) colchicine for 8 days was the most efficient way of inducing tetraploid ginger. Induced tetraploid strains, ‘4× Kintoki’, ‘4× Sanshu’, and ‘4× Philippine cebu 1’, had higher pollen fertility and germinability than the diploid counterparts, i.e., in the diploid strains, pollen fertility ranged from 0.3 to 6.2% and the germination rate from 0.0 to 0.1%, while in the tetraploid strains, pollen fertility ranged from 27.4 to 74.2% and the germination rate from 4.8 to 12.9%.  相似文献   

19.
Citizen science has been gaining popularity in ecological research and resource management in general and in urban forestry specifically. As municipalities and nonprofits engage volunteers in tree data collection, it is critical to understand data quality. We investigated observation error by comparing street tree data collected by experts to data collected by less experienced field crews in Lombard, IL; Grand Rapids, MI; Philadelphia, PA; and Malmö, Sweden. Participants occasionally missed trees (1.2%) or counted extra trees (1.0%). Participants were approximately 90% consistent with experts for site type, land use, dieback, and genus identification. Within correct genera, participants recorded species consistent with experts for 84.8% of trees. Mortality status was highly consistent (99.8% of live trees correctly reported as such), however, there were few standing dead trees overall to evaluate this issue. Crown transparency and wood condition had the poorest performance and participants expressed concerns with these variables; we conclude that these variables should be dropped from future citizen science projects. In measuring diameter at breast height (DBH), participants had challenges with multi-stemmed trees. For single-stem trees, DBH measured by participants matched expert values exactly for 20.2% of trees, within 0.254 cm for 54.4%, and within 2.54 cm for 93.3%. Participants’ DBH values were slightly larger than expert DBH on average (+0.33 cm), indicating systematic bias. Volunteer data collection may be a viable option for some urban forest management and research needs, particularly if genus-level identification and DBH at coarse precision are acceptable. To promote greater consistency among field crews, we suggest techniques to encourage consistent population counts, using simpler methods for multi-stemmed trees, providing more resources for species identification, and more photo examples for other variables. Citizen science urban forest inventory and monitoring projects should use data validation and quality assurance procedures to enhance and document data quality.  相似文献   

20.
Quantifying urban tree biomass and carbon (C) storage by using allometric equations is required for various studies such as assessing the inventory, modelling, and measuring ecosystem services of urban trees. However, the lack of urban-specific allometric equations leads to uncertainty when estimating urban tree biomass and C storage. Therefore, we followed a nondestructive approach and developed allometric equations specifically for Acer buergerianum Miq., Ginkgo biloba L., Platanus orientalis L., Prunus yedoensis Matsum., and Zelkova serrata (Thunb.) Makino in Daegu, Korea. Diameter at breast height (DBH)-based and DBH-and-height-based allometric equations were highly accurate at estimating the aboveground volume (R2 > 0.92), while the allometric equations for P. orientalis and Z. serrata developed for traditional forests overestimated volume by 68% and 427%, respectively. The addition of a height variable into the DBH-based allometric equations did not increase the reliability of the allometric equations at a local level. The mean aboveground C storage of urban street trees was 24.9 Mg C/ha except for P. orientalis with a mean of 69.7 Mg C/ha, and the total aboveground C storage of urban street trees in Daegu was 10.6 Gg C. Alternatively, a generalized allometric equation which compiled species-specific equations can be applied for large-scale estimation. The generalized equations developed in this study and those found in the literature may suggest a constant value (~2.3–2.4) for the scaling exponent in the generalized equations. Allometric equations developed from natural or artificial stands may overestimate the volume of urban street trees; therefore, estimating urban tree biomass and C storage requires urban-specific allometric equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号