首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质炭对农田土壤有机碳及其矿化影响的研究进展   总被引:1,自引:0,他引:1  
土壤有机碳在生物圈物质循环中起着重要作用,有机碳矿化将显著影响大气CO2的浓度,关系到养分的释放。近年来,生物质炭农用的土壤生态系统固碳减排功能方面的研究受到广泛关注。但由于研究中所采取的具体方法和研究对象等差异,目前研究的结果仍然存在争议。本文主要从试验材料、试验条件和驱动因子等角度综述生物质炭对土壤有机碳含量及矿化影响,并阐述进一步研究值得探索的方向,以客观评价生物质炭的农田固碳减排效应。  相似文献   

2.
3.
本研究采用大田试验结合室内培养,以无还田为对照(CK),对比研究了秸秆(S1、S2和S3)和生物炭(B1、B2和B3)等碳量还田(施碳量依次为2.67、5.34和8.01 t/hm2)对黄壤稻田土壤有机碳矿化和水稻产量及品质的影响.结果 表明:与对照CK处理相比,秸秆和生物炭还田的土壤有机碳(SOC)分别显著提高39....  相似文献   

4.
施用生物炭后塿土土壤有机碳、氮及碳库管理指数的变化   总被引:9,自引:3,他引:9  
通过2年4季的田间小区试验,研究了添加0~80 t·hm~(-2)果树枝条生物炭后,土壤总有机碳(TOC)、全氮(TN)、p H、土壤活性有机碳(AOC)、土壤中活性有机碳(MAOC)、土壤高活性有机碳(HAOC)、土壤水溶性有机碳(WSOC)、碳库管理指数(CPMI)的变化及各指标之间的相关性。结果表明:在第四季作物收获后,随生物炭施用量的增加,TOC增加59.80%~180.52%、TN增加13.22%~20.92%、p H增加0.76%~1.28%;HAOC和CPMI均在生物炭用量为60 t·hm~(-2)时达到最大,分别较对照增加70.36%和52.43%;AOC前两季在生物炭用量为40 t·hm~(-2)时达到最大,后两季在生物炭用量为60 t·hm~(-2)时达到最大,而整个试验期内各施炭处理分别比对照增加18.46%~73.42%;WSOC在前三季随生物炭用量的增加而降低,且各施炭处理分别比对照低8.00%~42.77%。相关性分析表明,除MAOC外,上述各指标均与生物炭用量呈显著相关关系(P0.05)。研究认为,施用生物炭能提高土壤总有机碳、全氮含量和土壤碳库管理指数,有利于改善土壤质量,提高土壤肥力,为农田土壤可持续利用和生物炭作为土壤改良剂的应用提供科学依据和参考价值。  相似文献   

5.
施肥对红壤有机碳矿化特征的影响   总被引:7,自引:0,他引:7  
为阐明不同肥料施用对红壤有机碳矿化及几种碳形态的影响,对长期定位试验红壤单施有机肥(M)、施用化肥(NPK)、化肥十有机肥(NPKM)、不施肥(CK)4个处理的土样进行室内培养,在培养期间定期采样红壤CO2释放量及土壤微生物生物量碳(SMBC)和可溶性有机碳(WSOC)的含量进行分析.结果表明:1)不同施肥处理CO2释...  相似文献   

6.
施用炭基肥及生物炭对棕壤有机碳组分的影响   总被引:8,自引:0,他引:8  
【目的】作为土壤肥力的重要指标,土壤有机碳及其组分在耕地生产力和作物产量方面发挥着重要作用。论文以4年定位施肥试验为依托,分析连续施用炭基肥及生物炭对土壤有机碳含量及其组分的影响,为调控农田土壤肥力及棕壤有机碳库的管理提供科学依据。【方法】田间试验始于2011年,设置5个处理:不施肥(CK)、低量生物炭(C15)、高量生物炭(C50)、氮磷钾配施(NPK)、炭基肥(BBF)。其中C15与BBF是等碳量处理,NPK与BBF是等氮磷钾养分处理。于第4年花生收获后(2014年秋季)采集各处理耕层(0-20 cm)土壤样本,测定土壤有机碳总量、各组分含量及花生产量。【结果】施用炭基肥和生物炭均可以显著增加耕层土壤总有机碳含量,比试验起始年土壤(简称起始土)分别提高10%、8%;而在相同碳素(C15和BBF)或氮磷钾养分投入(NPK和BBF)条件下,施用炭基肥提升土壤总有机碳含量的效果最好,提升幅度为2%-15%。施入炭基肥及生物炭显著提高了游离态颗粒有机碳和闭蓄态颗粒有机碳含量;在等碳量投入条件下,炭基肥处理的提升幅度分别为43%、17%;等氮磷钾养分投入条件下,炭基肥处理的提升幅度更大,分别为40%、43%。无论施入炭基肥或生物炭,对于矿物结合态有机碳含量影响均不大,但都比起始土略高。土壤可溶性有机碳含量变化规律与总有机碳相似,即施入炭基肥或生物炭均提高了其含量,但等碳量投入条件下无显著差异。各施肥处理花生产量在199.4-232.9 kg/667m2,均显著高于不施肥处理,其中施用炭基肥产量最大,比等碳量处理(C15)高17%,比等养分处理(NPK)高10%,且差异显著。【结论】连续多年施用炭基肥或生物炭均能明显提高土壤总有机碳、游离态颗粒有机碳、闭蓄态颗粒有机碳含量;提升效果显著优于投入等量碳素或等量氮磷钾养分。连续多年施肥可以提高土壤中水溶性有机碳含量,但炭基肥与生物炭、氮磷钾配施处理间无明显差异。无论施用炭基肥还是生物炭对土壤矿物结合态有机碳含量影响不大。连续施用炭基肥对花生产量的提升效果最好,显著高于等氮磷钾养分和等碳量处理。  相似文献   

7.
通过对稻田土壤有机碳矿化特征及其活性组分的研究,为提高贵州黄壤稻田土壤固碳能力提供理论依据。设置4个处理:不施肥(CK)、单施化肥(NPK)、秸秆配施化肥(NPKS)和生物炭配施化肥(NPKB),结合室内矿化试验对土壤碳氮比(C/N)、活性有机碳(AOC)含量、碳库管理指数(CPMI)和有机碳矿化进行研究。结果表明,与NPK处理相比,NPKB处理SOC含量和C/N分别显著提高9.10%、23.10%,NPKS处理TN含量最高,与CK处理相比显著提高19.39%。NPKS处理下,土壤易氧化有机碳(ROC)、可溶性有机碳(DOC)和微生物量碳(MBC)含量均最高,分别为5.88 g/kg、96.15 mg/kg和334.09 mg/kg。与NPK处理相比,NPKB处理显著增加了土壤稳态碳(SC)含量、碳库指数(CPI)和CPMI,对碳库活度(A)和碳库活度指数(AI)无显著影响,NPKS处理则显著增加了A、AI和CPMI。在培养期内,SOC矿化速率在第1天处于最大值,前期(第1~6天)大幅下降,后期(第6~45天)缓慢下降;第45天时,SOC累积矿化量在2.14~2.82 g/kg之间,而...  相似文献   

8.
不同地力玉米田土壤有机碳矿化特征   总被引:2,自引:1,他引:2  
为探讨不同地力玉米田土壤有机碳矿化特征,通过为期196 d的土壤有机碳矿化培养试验,对高、中、低3种不同地力玉米田0~20 cm和20~40 cm土层土壤进行了研究。结果表明:不同地力玉米田土壤有机碳矿化速率随时间的变化呈现相同的变化趋势,即随培养时间延长,呈现先高后低的变化趋势,最后趋于平稳;但随地力等级的降低,土壤有机碳矿化速率逐渐减小。培养结束时,不同地力玉米田0~20 cm和20~40 cm土层土壤有机碳累积矿化量之间均存在显著性差异(P0.05);低地力土壤有机碳稳定性最差,固存量最小。同一地力,20~40 cm土层土壤有机碳矿化速率和累积矿化量较0~20 cm显著降低(P0.05),表层土壤稳定性较差,不利于土壤有机碳固定。伴随土壤有机碳矿化过程,土壤微生物生物量碳(MBC)和土壤可溶性有机碳(DOC)含量均较初始含量显著降低(P0.05);土壤有机碳潜在矿化势(Cp)与土壤有机碳、全氮、铵态氮、硝态氮、MBC和DOC均呈极显著正相关。土壤有机碳矿化是陆地生态系统碳循环的重要过程,且当地力等级变化时,各土层土壤有机碳的稳定性均受到不同程度的影响。  相似文献   

9.
为探究生物炭用量和粒径对紫色土入渗过程与持水性能的影响,采用室内一维土柱模拟试验,设置4种生物炭用量(0%,1%,3%,5%)和3种粒径(0~0.25,0.25~0.5,0.5~1 mm),其中0%施用量为对照处理(CK).结果显示:添加不同用量和粒径的生物炭均延长了湿润锋达到土柱底部的时间,相同粒径条件下湿润锋运移深度和累积入渗量随生物炭施用量的增加而降低(p<0.05), 3%施用量时较小粒径(0.25~0.5 mm)的生物炭对水分入渗的抑制作用优于大粒径(0.5~1 mm),湿润锋运移深度随入渗时间的变化规律符合幂函数.生物炭可以改变土壤剖面含水率的分布趋势,增强紫色土的持水能力,整体增效为:5%>3%>1%>CK, 0~0.25 mm>0.25~0.5 mm>0.5~1 mm>CK.入渗结束24 h时,施用生物炭处理下各土层土壤含水率均比CK高,其中土层10~30 cm中施炭处理的含水率明显增大(p<0.05),各处理土壤平均含水率较CK增加了6.48%~13.51%. Kostiakov模型对添加生物炭后紫色土的水分入渗过程的拟...  相似文献   

10.
【目的】探索短时间尺度下辣椒秸秆生物质炭添加对喀斯特石灰土地区土壤有机碳(SOC)矿化和SOC库的直接影响,为评估西南喀斯特石灰土地区辣椒秸秆生物质炭还田利用的生态环境效应提供科学依据。【方法】采用广口瓶进行恒温、恒湿密封培养试验,以不添加生物质炭为对照(CK),设置0.1%、0.5%、1.0%、2.0%和4.0%共5个辣椒秸秆生物质炭添加处理,用NaOH溶液吸收法测定63 d培养期内喀斯特石灰土有机质矿化过程释放的CO2,培养结束后测试各形态SOC含量的变化情况。【结果】培养63 d后,0~4.0%添加处理石灰土SOC累积矿化量为473.05±78.60~673.74±102.66 mg C/kg,4.0%添加处理可明显提高累积矿化量。各添加处理SOC矿化过程均可用双库一级动力学模型进行拟合,0.1%~0.5%和1.0%~4.0%添加处理条件下易降解SOC矿化速率常数(ka)分别为0.021±0.001~0.034±0.004/d和0.248±0.021~0.343±0.033/d,对易降解SOC的矿化分别起抑制和促进作用;所有添加处理对难降解SOC矿化起促进作用。1.0%~4.0%添加处理可显著提高易降解SOC库储量(Ca)和土壤微生物量碳(MBC)含量(P<0.05,下同),其值范围分别为238.19±20.72~937.48±71.75 mg/kg和368.22±12.19~449.52±18.91 g/kg。2.0%和4.0%添加处理显著提高土壤易氧化有机碳(ROC)含量,其值分别为2849.97±184.21和3163.92±107.16 mg/kg。生物质炭添加对土壤水溶性有机碳(WSOC)含量无显著影响(P>0.05,下同)。添加辣椒秸秆生物质炭的处理中,MBC与Ca、ka、难降解SOC矿化速率常数(ks)和ROC呈极显著正相关(P<0.01,下同),与难降解SOC库储量(Cs)呈极显著负相关,与WSOC无显著相关性。【结论】辣椒秸秆生物质炭对喀斯特石灰土SOC矿化速率的影响与添加量有关,1.0%~4.0%添加处理可提高矿化速率,同时增加Ca、MBC和ROC含量,但对WSOC含量无影响,4.0%添加处理在63 d培养期内可提高土壤累积矿化量。为减少土壤碳排放,建议辣椒秸秆生物质炭改良西南喀斯特石灰土的添加量应低于4.0%。  相似文献   

11.
[目的]通过研究添加外源有机物对不同施肥条件下水稻土有机碳矿化及形态的影响,探究不同施肥措施对水稻土有机碳稳定性的影响,为水稻土的合理碳管理施肥提供参考.[方法]以江苏溧阳白土(4年定位试验)和如皋高砂土(11年定位试验)2种典型水稻土为研究对象,各选取4个不同肥料处理的耕层(0~15 cm)土样,各处理分别为不施肥(...  相似文献   

12.
为探究施用不同原料生物炭对酸性土壤改良及氮素矿化作用和硝化作用的影响,以酸性红壤为供试土壤,添加水稻秸秆、稻壳及木屑3种原料制备的生物炭,开展为期50 d的室内培养试验.设置空白对照(CK)、单施化学肥料(F)、水稻秸秆生物炭+化学肥料(B1)、稻壳生物炭+化学肥料(B2)、木屑生物炭+化学肥料(B3)共5个处理,测定...  相似文献   

13.
生物质炭施用对不同深度稻田土壤有机碳矿化的影响   总被引:1,自引:0,他引:1  
本文旨在揭示生物质炭施用下不同深度稻田土壤有机碳矿化特征的变化,为提高稻田土壤生物质炭施用下的固碳效应提供参考。以太湖地区施用生物质炭2 a后的水稻土为研究对象,采集了7个不同土壤深度的土壤样品,通过室内培养试验,分析了生物质炭施用下不同深度土壤有机碳分布及矿化特征。结果表明,生物质炭仅显著增加了表层(0~10 cm)土壤总有机碳含量,而对深层土壤无显著影响。然而,与对照相比,施用生物质炭显著降低了土壤0~40 cm有机碳矿化强度,0~10、10~20、20~30、30~40 cm土层的降幅分别为23.74%、37.57%、37.62%和15.95%,并降低了10~40 cm土层的微生物生物量碳和0~40 cm土层微生物代谢熵,同时表层(0~10 cm)土壤微生物生物量碳显著增加11.3%,而以上各指标在40 cm以下土层未因生物质炭添加而产生显著变化。因此,生物质炭在2 a尺度上提高了稻田土壤0~40 cm有机碳的稳定性,有助于增加深层土壤固碳潜力。  相似文献   

14.
不同试剂提取紫色土溶解性有机碳含量研究   总被引:3,自引:0,他引:3  
本试验选取了不同浓度的KCl、K2SO4和CaCl2试剂,以6种不同耕作方式下的紫色土为对象,研究其提取土壤溶解性有机碳(DOC)的浸提效果.结果表明,各试剂提取土壤DOC含量均随生育期变化,呈现先增加后减弱的趋势,在拔节期达到峰值.同一生育期下,2.00 mol·L-1 KCl和0.25 mol·L-1K2SO4提取DOC平均含量相对最高,0.05 mol·L-1 KCl和0.15 mol·L-1CaCl2提取DOC平均含量相对较低.几种试剂中0.25 mol· L-1K2SO4提取的成熟期土壤DOC量占总有机碳比例最大(2.67%),同时,0.25 mol·L-1 K2SO4测定各时期结果重复间的平均变异系数也最小(10.00%),2.00 mol·L-1 KCl次之.0.15和0.25 mol·L-K2SO4提取的成熟期DOC与土壤有机碳、全氮、速效磷、全磷呈显著(p<0.05)或极显著(P<0.01)相关关系.因此,综合试剂提取土壤DOC的浸提率、稳定性及其与土壤性质的关系得出,0.25 mol·L-1 K2SO4为提取紫色土DOC的最佳试剂,2.00 mol·L-1 KCl和0.15 mol·L-1 K2SO4次之.  相似文献   

15.
生物炭对杉木人工林土壤碳氮矿化的影响   总被引:1,自引:2,他引:1  
为探讨杉木生物炭输入到土壤中后对土壤碳、氮矿化的影响和机制,通过室内培养实验,研究了单独施用生物炭、凋落物及其配合施用下土壤碳、氮矿化的特征以及可溶性有机碳(DOC)和微生物生物量的变化。结果表明,生物炭单独施用或与凋落物同时添加到土壤中,均增加了土壤有机碳含量且抑制了土壤有机碳和/或凋落物的矿化。生物炭对DOC的吸附效应导致土壤可利用态碳显著降低,且单独添加生物炭后,土壤微生物生物量碳含量在培养初期显著降低,故这种吸附效应可能是生物炭抑制土壤有机碳矿化的重要原因之一。生物炭单独添加到土壤中在培养结束后(90 d)并未改变土壤氮的矿化量,但在培养过程中,却降低了土壤氮的矿化;然而,无论是否存在生物炭,添加凋落物均显著降低了土壤氮的矿化并增加了微生物生物量氮。这说明,无凋落物存在的情况下,生物炭的固氮效应呈现出短期效应。  相似文献   

16.
[目的]研究不同温度制备生物炭与秸秆配施对设施菜地土壤有机碳矿化特征及土壤理化性质的影响.[方法]以北京郊区设施菜地土壤为研究对象,进行室内矿化培养试验.[结果]生物炭与秸秆配施显著提高土壤有机碳矿化速率和累积矿化量,而单施生物炭对两者影响较小.添加300℃生物炭处理的土壤有机碳累积矿化量比添加600℃生物炭的处理高2.6%~17.6%,土壤有机碳累积矿化量随着秸秆添加量的增加而增大.生物炭的添加降低土壤有机碳的相对矿化潜力,额外添加等量秸秆也未能完全抵消生物炭对土壤有机碳相对矿化潜力的抑制作用.单施生物炭和生物炭与秸秆配施均显著提高土壤pH值和电导率.与单施生物炭相比,生物炭与秸秆配施对土壤有机质、碱解氮、有效磷含量的提升效果更为显著.[结论]施用生物炭对提高设施土壤有机质含量和碳库稳定性、促进固碳减排具有重要意义.而生物炭与秸秆配施不仅能够发挥生物炭的固碳功能,也能够提供更多的有效养分,更有利于改善设施土壤质量和促进土壤养分平衡.  相似文献   

17.
添加蔗渣生物质炭对农田土壤有机碳矿化的影响   总被引:5,自引:0,他引:5  
【目的】研究蔗渣生物质炭施用后农田土壤有机碳(SOC)矿化动态,为合理利用有机废弃物资源提供科学参考。【方法】在25℃、100%空气湿度条件下培养100 d,研究生物质炭不同添加量(0.1%、0.5%、1.0%和2.0%,以干土计)下水田和旱地土壤有机碳的矿化特征。【结果】各处理土壤有机碳矿化速率随时间的变化符合对数关系(P<0.01);土壤特性、生物质炭添加量及两者的交互作用对土壤总有机碳矿化有极显著影响(P<0.01);与对照相比,添加低量(0.1%)的生物质炭水田土壤有机碳累积矿化量降低了2.18%,旱地土壤有机碳累积矿化量降低了4.62%;添加低量生物质炭(0.1%和0.5%)对旱地SOC矿化的影响效果更明显,而添加高量生物质炭(1.0%和2.0%)则对水田土壤的影响效果更明显;培养前期生物质炭对水田土壤原有有机碳矿化正激发效应高于旱地土壤,后期对旱地土壤的负激发效应更稳定且维持时间更长。【结论】添加生物质炭不改变SOC矿化趋势。添加低量(0.1%)的生物质炭可抑制SOC矿化、促进SOC的积累。  相似文献   

18.
生物炭对塿土土壤含水量、有机碳及速效养分含量的影响   总被引:18,自引:6,他引:18  
生物炭作为土壤改良剂对酸性土壤改良研究有较多的报道,但是关于北方石灰性土壤研究报道很少,通过田间小区试验研究生物炭不同施用量对陕西关中塿土土壤含水量、有机碳和速效养分含量的影响.试验处理为:不施生物炭(CK)、生物炭施用量1000 kg·hm-2(T1)、5000 kg·hm-2(T2)、10 000 kg·hm-2(T3)、20 000 kg·hm-2(T4),3次重复,随机区组排列,小麦生育期定期采样(分蘖期、返青期、拔节期、抽穗期、灌浆期).结果表明:小麦生育期内,不同处理土壤含水量随生物炭施用量提高呈先降低后升高趋势,T4最高,T2最低;土壤有机碳含量表现为T4>T3>T2>T1>CK;土壤碱解氮和有效磷含量均随着生物炭施用量的增大呈先增加后降低趋势,处理T1最高,T4和CK最低;土壤速效钾含量T4>T3>T2>T1>CK.综合来看,在上述研究条件下,生物炭高施用量比低施用量有利于提高土壤含水量、土壤有机碳和速效钾含量,但在生物炭低施用量下土壤碱解氮和有效磷含量显著增高.  相似文献   

19.
为评价茭白秸秆生物炭作为生物炭基肥的潜力,以及为茭白秸秆生物炭在农业土壤中的应用提供理论基础,现以茭白秸秆为原料,探索了不同热解温度对茭白秸秆生物炭性质的影响。结果表明,随着热解温度从300℃升至700℃,茭白秸秆生物炭的生产效率从39.8%降至24.1%;茭白秸秆生物炭的炭化程度和极性增加,其在土壤中的残留时间为308.5~1 204.2年;茭白秸秆生物炭的总碳和总养分(N+P2O5+K2O)含量(wt)分别为61.6%~71.4%和9.7%~10.9%,pH为9.4~10.3,总砷、总铅、总铬的含量分别为9.0~12.7、0~1.5、7.9~74.8 mg/kg,总汞和总镉未检出。参照NY/T 3618-2020的行业标准,热解温度300~500℃条件下的茭白秸秆生物炭性质满足其行业标准要求。  相似文献   

20.
生物炭是一种由农林废弃物等物质在无氧或低氧的环境下经高温裂解得到的含碳量 很高的固体物质。因其具备原料来源广、比表面积大、孔隙发达、稳定性强等特征而得到了越来 越多的关注,现已成为土壤环境修复领域的研究热点。文章综述了近年来生物炭在土壤固碳方 面的国内外相关研究进展及机理分析,展望了生物炭在土壤修复领域的推广应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号