首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relatively few studies have investigated mistletoe infestation of tree species in urban settings, and even fewer considered infestation of alien tree species. Here, mistletoe infestation incidence and intensity were studied in Durban, South Africa. The relationship of infestation to tree CBH and height was examined in detail for the mistletoe species Erianthemum dregei. Although E. dregei is known to have a wide range of host taxa, we report E. dregei infestation on 27 new host species for the first time. E. dregei occurred on 30 host species with a preference for the alien host tree Melia azedarach in our study area. The relationship between infestation and CBH indicated that the trees (irrespective of species) of ≥200 cm were more susceptible to the mistletoe attack. The implications of this pattern, as well as those of high host diversity and especially of infestation of alien trees are discussed in a conservation perspective.  相似文献   

2.
Natural parks are comprised of preserved forested natural areas that are undergoing natural ecological processes. These areas can offer a refuge for local biodiversity and contribute substantially to ecosystem services in both rural areas with relatively low population densities, as well as high-density urban areas. Forested natural parks located in urban areas should experience more stressful environmental conditions than nearby rural areas, yet we know relatively little about how urbanization impacts tree communities within these important natural habitats. To better understand the impact of urbanization on forests, we investigated the species composition, abundance, and diversity of midstory and canopy trees as well as tree seedlings in urban and rural natural parks in and around Cleveland, Ohio. We found that both urban and rural natural parks have similar tree abundance, but midstory and canopy trees as well as tree seedling communities in the urban natural parks included higher abundances of stress-tolerant species compared to rural parks. In addition, this pattern was driven by changes in native tree species, as we observed low abundance of invasive species. More stress-resistant native species in urban areas include Quercus rubra and Prunus serotina, in contrast to rural natural parks which are dominated by Acer spp. and Fagus grandifolia. Lastly, we show that urban and rural natural parks have similar species diversity within plots, but we found higher variation in community composition among urban natural parks compared to among rural parks. Furthermore, Q. rubra and P. serotina were significantly larger in rural natural parks, indicating that both environmental stress and successional stage could drive compositional differences. Thus, we show that urbanization can have unexpected effects on plant community composition and diversity. Our study refutes the idea that these are degraded habitats, highlights the need to conserve them, and suggests that characterization of local variation in self-assembled urban tree communities will provide the most accurate picture of their management needs and potential ecosystem services.  相似文献   

3.
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the existing tree populations reveal that, on average, about 1 in 3 trees are planted in cities. Land uses and tree species with the highest proportion of trees planted were residential (74.8 percent of trees planted) and commercial/industrial (61.2 percent) lands, and Gleditsia triacanthos (95.1 percent) and Pinus nigra (91.8 percent). The percentage of the tree population planted is greater in cities developed in grassland areas as compared to cities developed in forests and tends to increase with increased population density and percent impervious cover in cities. New tree influx rates ranged from 4.0 trees/ha/yr in Baltimore to 8.6 trees/ha/yr in Syracuse. About 1 in 20 trees (Baltimore) and 1 in 12 trees (Syracuse) were planted in newly established tree populations. In Syracuse, the recent tree influx has been dominated by Rhamnus cathartica, an exotic invasive species. Without tree planting and management, the urban forest composition in some cities will likely shift to more pioneer or invasive tree species in the near term. As these species typically are smaller and have shorter life-spans, the ability of city systems to sustain more large, long-lived tree species may require human intervention through tree planting and maintenance. Data on tree regeneration and planting proportions and rates can be used to help determine tree planting rates necessary to attain desired tree cover and species composition goals.  相似文献   

4.
Trees provide multiple ecosystem services in urban centers and increases in tree canopy cover is a key strategy for many municipalities. However, urban trees also experience multiple stresses and tree growth can be impacted by urban density and impervious surfaces. We investigated the impact of differences in urban form on tree growth in the City of Merri-bek, a local government area in metropolitan Melbourne, which is the temperate climate zone. Merri-bek has a gradient in population density and urban greenness from north to south, and we hypothesized that tree growth in the southern areas would be lower because trees were more likely to have less access to water with high levels of impervious surfaces. We selected three common native evergreen species, Eucalyptus leucoxylon, Melaleuca linariifolia, and Lophostemon confertus that exhibit differences in climate vulnerability and assessed the tree canopy expansion in four urban density zones in Merri-bek between 2009 and 2020 using aerial image analysis. The differences in urban form did not significantly influence tree canopy growth and all species showed similar canopy expansion rates. However, smaller trees showed a greater relative canopy increase in the ten years, whereas larger trees had a greater absolute canopy growth. Thus, older and larger trees should be protected and maintained to achieve the canopy expansion. Our study indicated that differences in urban form are unlikely to have major impacts on the growth and canopy expansion of well adapted native tree species in open, suburban centers.  相似文献   

5.
There is a growing recognition that urban trees provide various valuable benefits and services such as enhanced human wellbeing. However, they also have a cost in terms of public health either directly (allergies) or by harboring species representing health risk for humans. This paper focuses on such a forest insect species, the pine processionary moth Thaumetopoea pityocampa. Its caterpillars develop gregariously during winter in a conspicuous silk nest in coniferous hosts. When disturbed, the larvae release urticating hairs that cause human or animal serious health problems. The purpose of our survey was to (1) inventory all individual trees belonging to potential host species and estimate the density of T. pityocampa (2) assess the spatial pattern of the insect population at the city scale. We conducted an exhaustive inventory of potential coniferous host trees in five municipalities (ca. 5000 ha) in the north of Orléans, France. Each tree was identified, geo-referenced and the number of moth nests it hosted was counted. A total of 9321 urban trees representing 11 coniferous taxonomic units were investigated. The distribution of T. pityocampa exhibited a marked spatial structure citywide. Geostatistics allowed to draw risk maps revealing strong patchiness. We provide the first estimate of T. pityocampa host tree preference in an urban context and found that Pinus nigra, P. pinaster and P. sylvestris were the most attacked trees. We also report numerous cases of T. pityocampa occurrence on the exotic ornamental Himalayan cedar Cedrus deodara. The management implications of our findings are two-fold: (1) risk maps constitute a useful framework for communication and public information, and can help developing control strategies; (2) some species frequently used for ornamental purposes are poor quality hosts regarding T. pityocampa and should therefore be preferred in public place usually frequented by vulnerable people (schools, nurseries, hospitals).  相似文献   

6.
Healthy and sustainable tree populations require a high diversity of genera and species. This study examined the occurrence and contents of tree inventories in Denmark's 30 largest municipalities. 59% of the municipalities had a tree inventory for street trees, but only about half of these were complete and updated. Only one municipality had a registration for trees other than street trees. Based on data from the tree inventories, the diversity of road side trees was analyzed at genus level and species level. A total of 82,072 street trees are part of the study. 11 different genera account for 92% of the total street tree stock, and 2–6 genera account for 40–80% of the street tree stock in the individual municipalities. Tilia was the most dominating genera (26%). 12 species account for 73% of the total street tree stock. The 6 most common species account for almost 50% of the total tree population. The species representing the largest numbers were Tilia × europaea (12%), Acer platanoides (10.9%), Platanus × acerifolia (7.2%), Tilia cordata (7.2%), Fraxinus excelsior (6.2%) and Sorbus intermedia (5.9%). The four most urbanized municipalities had a surplus of non-native species, but all municipalities apart from one had most street trees belonging to native species. The concluding recommendation of this study is that tree managers need to start working more strategic with their tree stock, in order to reduce the vulnerability, due to potential attacks from pests or diseases and climate change effects. A risk spreading system for the urban tree population is proposed, suggesting that no genera should account for more than 10% and no species for more than 5% of the tree population.  相似文献   

7.
Understanding the potential dynamics of tree pests and pathogens is a vital component for creating resilient urban treescapes. Epidemiologically relevant features include differences in environmental stress and tree management between street and garden trees, and variation in the potential for human-mediated spread due to intensity of human activity, traffic flow and buildings. We extend a standard spatially explicit raster-based model for pest and pathogen spread by dividing the urban tree population into roadside trees and park/garden trees. We also distinguish between naturally-driven radial spread of pests and pathogens and human-mediated linear spread along roads. The model behaviour is explored using landscape data for tree locations in an exemplar UK town. Two main sources of landscape data were available: commercially collated aerial data, which have high coverage but no information on species; and, an urban tree inventory, with low, non-random, coverage but with some species data. The data were insufficient to impute a species-specific host landscape accurately; however, by combining the two data sources, and applying either random or Matérn cluster point process driven selection of a subset of all trees, we create two sets of potential host landscapes. We find that combining the two mechanisms of dispersal has a non-additive effect, with the enhanced linear dispersal enabling new foci of infection to be established more rapidly than with radial dispersal alone; and clustering of trees by species slows down the expansion of epidemics when compared with random distribution of tree species within known host locations.  相似文献   

8.
A tree diversity inventory was carried out in urban green spaces (UGSs) of Chennai metropolitan city, India. This inventory aims to study the diversity, density and richness of trees in UGSs of Chennai. A total of one hundred 10 m × 10 m (total 1 ha) plots were laid to reveal tree diversity and richness of UGSs. Trees with ≥10 cm girths at breast height (gbh) were inventoried. We recorded 45 species in 42 genera and 21 families. Caesalpiniaceae and Fabaceae each with 6 species dominated the study area followed by Arecaceae (3). Density and stand basal area of the present study were 500 stems ha?1 and 64.16 m2, respectively. Most of the inventoried trees were native (31 species) and deciduous (28 species). Fabaceae and Caesalpiniaceae dominated the present study area in terms of stand basal area and density. The Shannon diversity index and evenness of study area were 2.79 and 0.73, respectively. The most important species and families based on species important value index (IVI) and family important value index were Albizia saman, Polyalthia longifolia and Azadirachta indica; Fabaceae, Caesalpiniaceae and Annonaceae respectively. We find Chennai's urban forest is relatively superior to many urban forests of the world in terms of stand basal area and species richness. Results emphasize the importance of enhancement of urban green spaces in Chennai metropolitan city.  相似文献   

9.
In order to have a healthy and sustainable urban tree population, a high diversity of species and genera is needed. This study examined (1) the diversity and distribution of genera and species of urban trees in the Nordic region; (2) the diversity in different sites of the city, distinguishing between street and park environments; and (3) the presence of native versus non-native tree species in urban environments in the Nordic region. The analysis of tree diversity was based on urban tree databases comprising a total of 190 682 trees in 10 Nordic cities – Aarhus and Copenhagen in Denmark; Espoo, Helsinki, Tampere and Turku in Finland; Gothenburg, Malmo and Stockholm in Sweden; and Oslo in Norway. The tree databases for Copenhagen, Espoo, Helsinki, Stockholm and Tampere only record street trees, while the remaining databases also include park trees. Tilia was the most dominant genus in Arhus, Copenhagen, Espoo, Gothenburg, Helsinki, Oslo and Stockholm, while Sorbus was the most dominant in Malmo and Betula in Tampere and Turku. Tilia × europaea was the most common species, comprising 16.0% of the total number of tree species. There was a higher proportion of species in parks than in street environments. The number of non-native species was higher than the number of native species in both street and park environments. However, the number of individuals belonging to native species was higher than the number of non-native individuals in all cities and environments except park environments in Arhus. The concluding recommendation from this study regarding greater diversity of genera and species is to exploit local experiences of rare species from local urban tree databases. After appropriate evaluation, urban tree planners can evaluate these rare species in larger numbers for e.g. street environments, where the need is greatest.  相似文献   

10.
The orchard of the Institute of Fruit Breeding of the German Federal Centre of Breeding Research on Cultivated Plants in Dresden-Pillnitz was highly affected by fire blight in 2003. Infected pomefruit trees were observed over a period of nearly 3 months. The first symptoms on pear trees were found on May 19th. The pathogen Erwinia amylovora was confirmed officially on May 26, and the last infected apple trees were detected the 11th of August. The infected trees had to be grubbed at the decision of the Phytopathological Authority. In total, 1164 apple and 478 pear trees were grubbed, including the entire pear collection of the gene bank. Of 35 wild species of pear, 49 accessions, eight accessions of six species each, showed infections. The apple collection of the gene bank included 33 wild species, with 365 accessions, and 845 cultivars and clones. Ten accessions of nine wild apple species and 81 cultivars/clones of these collections showed fire blight infection. The source of infection was the pear collection, and the distance from that source was important for the occurrence of infection. Field plots close to the pear collection had tree losses of 10–34%, while more distant plots had losses of 0–6%. Around 80% of the lost apple trees were detected and grubbed from 27th May to 11th June. Some of the cultivars bred in Dresden-Pillnitz, e.g. ‘Pilot’ and ‘Rekarda’, were affected by fire blight in most field plots, whereas most others were affected mainly only in plots adjacent to the infection source. A correlation of r=?0.72 could be calculated for rating in artificial shoot inoculations and percentage of trees of resistant cultivars lost. The cultivars ‘Pirol’, ‘Reanda’, ‘Remo’, ‘Rene’, ‘Renora’, ‘Resi’, and ‘Retina’ showed only a very low numbers of infected trees. No tree of ‘Rewena’ showed symptoms of fire blight. Despite a tendency to postblooming, only 8.9% of ‘Pinova’ trees had to be grubbed.  相似文献   

11.
The knowledge of the rate at which trees grow in urban areas is an important aspect to consider as it can influence our quantification and valuation of the ecosystem services provided by an urban forest. This study investigates growth variations in diameter and height for four common urban tree species (Acer pseudoplatanus, Betula pendula, Fraxinus excelsior and Quercus robur) across five cities in Great Britain (GB) and how the typical radial growth of two of those species (F. excelsior and Q. robur) changes with climate. Dendrochronology was used to identify tree age and changes in ring width and diameter at breast height (DBH) and tree height were measured in-situ at the time of coring. Results indicate a substantial variation in the mean annual growth rates and the relationships between DBH and age or height and age of each species across different cities. However, the multiple factors affecting tree growth seem to influence different species in different ways, with for example A. pseudoplatanus trees showing overall the fastest growth in Peterborough but B. pendula ones showing the slowest. Precipitation and temperature had an effect on radial growth of F. excelsior and Q. robur trees in GB, but the strength and direction of influence varied with time of year, species and city. In particular, low precipitation at the start or during the growing season was found to be a significant factor limiting radial growth. A trend towards a reduction in ring width increment was therefore identified in hot and dry years, primarily in south-eastern cities but in other cities too. This highlights the risk that a changing climate may have on the growth and, consequently, on the ecosystem service provision of healthy urban trees.  相似文献   

12.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

13.
In densely populated cities that are dominated by concrete buildings, urban parks serve as major green infrastructures for ecological and environmental functions. Trees are one of the important components that support these green infrastructures. Despite plenty of urban parks established in Hong Kong in the last 20 years, knowledge of tree composition and diversity is outdated. There were also no studies that investigated the differences in tree diversity in relation to park history. Therefore, this study aims to identify the temporary changes in tree composition and diversity in Hong Kong, by conducting a plot-based tree survey in 32 urban parks of different ages. Overall, 2801 trees belonging to 181 species were recorded in 319 plots across all the parks. A ridit analysis was conducted and it indicated the mature size of trees were not significantly larger in old parks. However, the linear mixed-effects models and the post-hoc tests suggested that DBH, tree height and the proportion of crown dieback for each class of tree size were greater in the old parks. Moreover, the composition of top-ranking dominant tree species varied substantially, where more ornamental and exotic trees were adopted in new parks. For species richness, the sample-based species accumulation curves of different park age overlapped when the horizontal axis of the curve was scaled by the average number of combined individual trees. When the horizontal axis was scaled by the number of plots, the curve for the old parks was above the curve for the new parks. The differences derived from these two accumulation methods indicated a higher tree density in old parks. For species evenness, both the rank-abundance curves and Rényi diversity curves depicted a similar low species evenness in old and new parks. These results suggested that species diversity remained largely unchanged from old parks to new parks though the dominant tree species varied. Greater attention should be paid to increase the species evenness in all urban parks, increase tree density in new parks and improve tree maintenance in old parks.  相似文献   

14.
Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter “pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for early detection of exotic pests that could threaten commercial, environmental and amenity forests. Biosecurity surveillance for exotic forest pests relies on monitoring of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. There are few publicly available spatial databases of urban street and park trees, so locating and mapping host trees is conducted via ground surveys. This is time-consuming and resource-intensive, and generally does not provide complete coverage. Advances in remote sensing technologies and machine learning provide an opportunity for semi-automation of tree species mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (≥12 cm), 10-band, multispectral imagery using the ArborCam™ system mounted to a fixed-wing aircraft over Sydney, Australia. We mapped 630 Pinus trees and 439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field mapping app. Using a machine learning, convolutional neural network workflow, we were able to classify the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 84.4%. Our study validates the potential for using multispectral imagery and machine learning to increase efficiencies in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this technology.  相似文献   

15.
Tree species and external signs of decay influence the felling criteria in risk assessments. Following felling in Helsinki, Finland, 133 urban trees were investigated in detail (54 trees of Tilia spp., 48 Betula spp., and 31 Acer spp.). The objective was to find out whether a local management practice could be developed to improve tree care and protection of old urban trees. There was considerable variation between the felling decisions for trees with diverse defects. In addition, a contradiction was found in the criteria for felling decisions between trees with various symptoms, especially between trees with cavities and trees with advanced stages of decay. This contradiction mostly affected Tilia spp.  相似文献   

16.
Tree diversity is one of the most important components of urban ecosystems, because it provides multiple ecological benefits and contributes to human well-being. However, the distribution of urban trees may be spatially segregated and change over time. To provide insights for a better distribution of tree diversity in a socially segregated city, we evaluated spatial segregation in the abundance and diversity of trees by socioeconomic group and their change over a 12-year period in Santiago, Chile. Two hundred vegetation plots were sampled across Santiago in 2002 and 2014. We found that overall abundance and diversity of urban trees for the entire city were stable over 12 years, whereas species richness and abundance of native tree species increased. There was segregation in tree species richness and abundance by socioeconomic group, with wealthier areas having more species and greater abundance of trees (for all tree species and native species) than poorer ones. Tree community composition and structure varied with socioeconomic group, but we found no evidence of increased homogenization of the urban forest in that 12 years. Our findings revealed that although tree diversity and abundance for the entire city did not change in our 12-year period, there were important inequities in abundance and diversity of urban trees by socioeconomic group. Given that 43% of homes in Santiago are in the lower socioeconomic areas, our study highlights the importance of targeting tree planting, maintenance and educational programs in these areas to reduce inequalities in the distribution of trees.  相似文献   

17.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

18.
It is well known that trees can reduce the urban heat island and adapt our cities to climate change through evapotranspiration. However, the effects of urbanization and anticipated climate change in the soil–root rhizosphere have not been widely investigated. The current study studied the growth and physiology of the urban tree Pyrus calleryana grown in a factorial experiment with or without urbanization and simulated climate change between April 2010 and December 2012 in the Botanical Grounds of the University of Manchester, UK. The study indicated that urbanization and simulated climate change had small but contrasting effects on tree growth and morphology. Urbanization increased tree growth by 20–30%, but did not affect leaf area index (LAI) and showed reduced peak water loss and hence evapotranspirational cooling. Although soil moisture content in the upper 20 cm was higher in the urbanized plots, urbanization showed reduced sap flux density, reduced chlorophyll a:b and delayed recovery of chlorophyll fluorescence (Fv:Fm) throughout the experimental period. In contrast, simulated climate change had no effect on growth but increased LAI by 10%. Despite being more water stressed, trees grown in simulated climate change plots lost more water both according to porometry and sap flow measurements. Simulated climate change increased peak energy and water loss by around 13%, with trees having an average sap flux density of around 170 g cm?2 d?1, 40% higher than trees grown in control plots. Our study suggested that transpirational cooling benefit might be enhanced with a longer growth season and higher soil temperature in places such as Manchester, UK in future, but potentially at the expense of photosynthesis and carbon gain.  相似文献   

19.
Urban areas have unique environments such as high air temperature, soil compaction and disturbance, and air and water pollution often impose plant stresses. Natural disasters can impose even greater stresses on plants in such areas. In 2011 Bangkok, Thailand experienced its worst flooding in over two decades, inundated up to a meter for a month. Here we report on tree tolerance to submerged, anoxic soils based on mortality. We identified over 6500 trees by taxa: 395 species in 219 genera within 60 families, which were categorized into three groups: susceptible (>50% mortality), tolerant (<50% mortality), and highly tolerant (no mortality). Among all the species, 18% were categorized as flood susceptible, 75% as tolerant, and 7% as highly tolerant. The floods resulted in decreased overall species richness by 18%, particularly in the Magnoliaceae and Lauraceae families, for which the mortality was 100% and 66%, respectively. Flood susceptible species were mostly from high rainfall habitats such as the hill evergreen forest. As expected, highly flood tolerant species were from the mangrove forests, beach/strand forests, and swamp plant communities, where the root zones are persistently saturated with lower quality water. Unexpectedly, many species native to higher temperature, drier, often deciduous lowland habitats were found to be flood tolerant, and were from the cultivated fruit and ornamental species. The results also indicated that smaller and younger trees suffered more mortality than larger and more mature trees. Therefore, during the tree selection process for planting in urban environments that may be at risk of frequent flooding, species from a wide spectrum of ecological habitats should be considered; particularly those characterized by one or more environmental stresses, such as drought, salt, heat, or saturated soils.  相似文献   

20.
A simulation model was used to study the interaction between landscape pattern and components of the dispersal strategy of the mistletoe Amyema preissii by mistletoe birds (Dicaeum hirundinaceum). The landscape was modelled as a map of host trees for the mistletoes, characterised by the total density and clumpiness of trees. A landscape was considered as a set of equal sized bird territories, with the majority of seeds produced in such a territory dispersed within that area. Age-specific birth and death rates of mistletoes were measured in the field. Seed dispersal was characterised by four parameters: the fraction of within-tree seed dispersal, the ratio of attractiveness to birds of tree canopy volume over attractiveness of mistletoe fruit number, seed survival, and the fraction of seeds leaving their original territory.A sensitivity analysis was carried out using a factorial design on landscape type and dispersal parameters. General linear modelling of mistletoe population size after 100 years showed that, in a given landscape, seed survival was the strongest determinant. Total mistletoe population also increased exponentially with tree density, but the number of mistletoes per tree decreased. Population size depended on tree clumping as well, with larger mistletoe populations sustained by woodlands with clumped trees.For a given level of seed survival, population size increased when birds were more attracted by canopy volume than by fruit crop. The strongest increase in population size occured for a combination of low tree density with high relative attractiveness. The relative effects of the fraction of within-tree dispersal and tree density depended on seed survival. For lower survival, fraction of within- tree dispersal determined population size more strongly while for higher survival, tree density became the dominant factor. Population size was negatively correlated with the fraction of within-tree dispersal. Finally, population size strongly increased only if dispersal out of a bird's territory represented 10% of the seed crop, a high value which seems unlikely in the field.The results support the hypothesis that woodland fragmentation promotes invasion by mistletoes. Although simulated mistletoe populations deviated from our natural population in having an excess of young individuals, sensitivity analysis produced several non- intuitive results and is thus valuable in focussing further efforts on field data collection. This study also illustrates how a simulation model of population dynamics can help in determining control strategies for an invasive organism. A reduction in seed survival and disinfection of larger trees would appear to be the most efficient strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号