首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies indicate that anthocyanin intake conveys a variety of health benefits, which depend on absorption and metabolic mechanisms that deliver anthocyanins and their bioactive metabolites to responsive tissues. The anthocyanin bioavailability of red cabbage (Brassica oleracea L. var. capitata) was evaluated as reflected by urinary excretion of anthocyanins and anthocyanin metabolites. Twelve volunteers consumed 100, 200, and 300 g of steamed red cabbage (containing 1.38 micromol of anthocyanins/g of cabbage) in a crossover design. Anthocyanin concentration in cabbage extract and urine was measured by HPLC-MS/MS. Six nonacylated and 30 acylated anthocyanins were detected in red cabbage, and 3 nonacylated anthocyanins, 8 acylated anthocyanins, and 4 metabolites were present in urine. Mean 24 h excretion of intact anthocyanins increased linearly from 45 (100 g dose) to 65 nmol (300 g dose) for acylated anthocyanins and from 52 (100 g dose) to 79 nmol (300 g dose) for nonacylated anthocyanins. Urinary recovery of intact anthocyanins (percent of anthocyanin intake) decreased linearly from 0.041% (100 g dose) to 0.020% (300 g dose) for acylated anthocyanins and from 0.18% (100 g dose) to 0.09% (300 g dose) for nonacylated anthocyanins. Anthocyanin metabolites consisted of glucuronidated and methylated anthocyanins. The results show that red cabbage anthocyanins were excreted in both intact and metabolized forms and that recovery of nonacylated anthocyanins in urine was >4-fold that of acylated anthocyanins.  相似文献   

2.
Anthocyanins are present in human diet due to their wide occurrence in fruits and beverages. They possess antioxidant activities and could be involved in several health effects. The aim of this study was to investigate anthocyanin metabolism and distribution in the digestive area organs (stomach, jejunum and liver) and kidney, as well as a target tissue (brain) in rats fed with a blackberry (Rubus fruticosus L.) anthocyanin-enriched diet for 15 days. Identification and quantification of anthocyanin metabolites was carried out by HPLC-ESI-MS-MS and HPLC-DAD, respectively. The stomach exhibited only native blackberry anthocyanins (cyanidin 3-O-glucoside and cyanidin 3-O-pentose), while in other organs (jejunum, liver, and kidney) native and methylated anthocyanins as well as conjugated anthocyanidins (cyanidin and peonidin monoglucuronides) were identified. Proportions of anthocyanin derivatives differed according to the organ considered, with the liver presenting the highest proportion of methylated forms. Jejunum and plasma also contained aglycone forms. In the brain, total anthocyanin content (blackberry anthocyanins and peonidin 3-O-glucoside) reached 0.25 +/- 0.05 nmol/g of tissue (n = 6). The urinary excretion of total anthocyanins was low (0.19 +/- 0.02% of the ingested amount). Thus, organs of the digestive area indicated a metabolic pathway of anthocyanins with enzymatic conversions (methylation and/or glucurono-conjugation). Moreover, following consumption of an anthocyanin-rich diet, anthocyanins enter the brain.  相似文献   

3.
Many reports have described the bioavailability of anthocyanins; however, most of these reports investigated only the amount of anthocyanins excreted in urine. In the present study, we calculated the pharmacokinetic bioavailability of anthocyanins in rats by measuring the plasma concentration of delphinidin-3-rutinoside that had been administered orally or intravenously. Delphinidin-3-rutinoside was primarily absorbed in the blood and excreted into urine as unmetabolized forms with a T(max) of 26.3 min and a C(max) of 0.285 +/- 0.071 micromol/L. We detected small amounts of the metabolite 4'-O-methyl-delphinidin-3-rutinoside in the plasma, but we detected neither anthocyanidin (aglycone) nor glucuro- or sulfoconjugates. For the 8 h period after intake, delphinidin-3-rutinoside and 4'-O-methyl-delphinidin-3-rutinoside were excreted to urine at 795 +/- 375 and 12.3 +/- 2.91 nmol, respectively. Relative to intravenous injection, oral administration of delphinidin-3-rutinoside resulted in complete bioavailability (0.49 +/- 0.06%). Analysis of delphinidin-3-rutinoside plasma concentrations in bile cannulated rats revealed that, for the 8-h period after intake, the intact delphinidin-3-rutinoside excretion ratio in bile was 11% of the excretion ratio of 4'-O-methyl-delphinidin-3-rutinoside, 1.91 +/- 0.35 nmol versus 17.4 +/- 8.67 nmol, respectively. Setting the bile duct cannulation in a Bollman-type cage, however, significantly increased the bioavailability of orally administered delphinidin-3-rutinoside (18.14 +/- 6.24%). This effect appears to stem immobilization stress by reducing gastrointestinal motility. The cumulative excretion of delphinidin-3-rutinoside and 4'-O-methyl-delphinidin-3-rutinoside in urine and bile was 2.67 +/- 1.24% (w/w) of the dose ingested. Studies report that several metabolites are formed after oral ingestion of anthocyanins. Examples include glucuronyl from cyanidin-3-glucoside and both glucuronyl and sulfate conjugates from pelargonidin-3-glucoside. Our results indicate that delphinidin-3-rutinoside might be metabolized differently from cyanidin-3-glucoside and pelargonidin-3-glucoside.  相似文献   

4.
Fast access of some grape pigments to the brain   总被引:2,自引:0,他引:2  
Anthocyanins represent the main flavonoid pigments in red grape and wine, in red berries, and in many other fruits and vegetables and are widespread in the human diet. After ingestion, these complex, hydrophilic compounds quickly appear as intact molecules in the plasma. This study investigated their presence in the brain of anesthetized rats that received 8 mg/kg of body weight of a pure anthocyanin mixture extracted from Vitis vinifera grapes. The mixture was maintained in the stomach for 10 min. After this time, intact anthocyanins were detected by HPLC-DAD-MS not only in the plasma (176.4 +/- 50.5 ng/mL, mean +/- SEM) but also in the brain (192.2 +/- 57.5 ng/g). These results demonstrate for the first time that grape pigments can reach the mammalian brain within minutes from their introduction into the stomach.  相似文献   

5.
We determined red fruit anthocyanins, cyanidin-3-glucoside (Cy-g) and cyanidin-3,5-diglucoside (Cy-dg), incorporated into plasma and liver of rats and human plasma by UV-HPLC. Fifteen minutes after an oral supplementation of a mixture of 320 mg of Cy-g and 40 mg of Cy-dg/kg of body weight, rats showed an increase to a maximum of 1563 microg (3490 nmol) of Cy-g/L and 195 microg (320 nmol) of Cy-dg/L in plasma and 0.067 microg (0.15 nmol) of Cy-g/g and a trace of Cy-dg together with methylated metabolites such as peonidin-3-glucoside in liver. In human plasma, 30 min after intake (2.7 mg of Cy-g and 0.25 mg of Cy-dg/kg of body weight), an average of 11 microg (24 nmol) of Cy-g/L and a trace of Cy-dg were found. Cyanidin as aglycone of Cy-g and Cy-dg was not found in such plasma samples, neither were conjugated and methylated anthocyanins. The results indicated that anthocyanins are incorporated keeping structurally intact glycoside forms, from the digestive tract into the blood circulation system in mammals.  相似文献   

6.
There is strong evidence that oxidative stress participates in the etiology of neurodegenerative diseases such as Parkinson's, and Alzheimer's diseases. Moreover, emotional stress effects in the central nervous system play a vital role in homeostasis. The protective effect of anthocyanins on the cerebral oxidative stress was studied using the whiskers cut model. In mice, such treatment causes psychological or emotional distress leading to oxidative stress in tissues. To investigate the in vivo antioxidant activity of anthocyanins, an extract of Vaccinium myrtillis L., an anthocyanin mixture, was orally administered (100 mg/kg of body weight.) to mice for 7 days, and then psychological stress was assessed by cutting off their whiskers. Whisker removal increased both protein carbonyl formation and lipid peroxidation in the brain, heart, kidney, and liver. Further, the levels of oxidative markers showed regional differences in the brain. Concomitantly, dopamine neurotransmitter levels were altered in both the midbrain and the brain cortex. Orally administered anthocyanins were also active in the brain, suppressing stress-induced cerebral oxidative stress and dopamine abnormalities in distressed mice. These effects of anthocyanin treatment suggest their possible usefulness for the treatment of cerebral disorders related to oxidative stress.  相似文献   

7.
Ellagitannin-containing foods (strawberries, walnuts, pomegranate, raspberries, oak-aged wine, etc.) have attracted attention due to their cancer chemopreventive, cardioprotective, and antioxidant effects. Ellagitannins (ETs) are not absorbed as such but are metabolized by the intestinal flora to yield urolithins (hydroxydibenzopyran-6-one derivatives). In this study, Iberian pig is used as a model to clarify human ET metabolism. Pigs were fed either cereal fodder or acorns, a rich source of ETs. Plasma, urine, bile, lumen and intestinal tissues (jejunum and colon), feces, liver, kidney, heart, brain, lung, muscle, and subcutaneous fat tissue were analyzed. The results demonstrate that acorn ETs release ellagic acid (EA) in the jejunum, then the intestinal flora metabolizes EA sequentially to yield tetrahydroxy- (urolithin D), trihydroxy- (urolithin C), dihydroxy- (urolithin A), and monohydroxy- (urolithin B) dibenzopyran-6-one metabolites, which were absorbed preferentially when their lipophilicity increased. Thirty-one ET-derived metabolites were detected, including 25 urolithin and 6 EA derivatives. Twenty-six extensively conjugated metabolites were detected in bile, glucuronides and methyl glucuronides of EA and particularly urolithin A, C, and D derivatives, confirming a very active enterohepatic circulation. Urolithins A and B as well as dimethyl-EA-glucuronide were detected in peripheral plasma. The presence of EA metabolites in bile and in urine and its absence in intestinal tissues suggested its absorption in the stomach. Urolithin A was the only metabolite detected in feces and together with its glucuronide was the most abundant metabolite in urine. No metabolites accumulated in any organ analyzed. The whole metabolism of ETs is shown for the first time, confirming previous studies in humans and explaining the long persistency of urolithin metabolites in the body mediated by an active enterohepatic circulation.  相似文献   

8.
Anthocyanins and proanthocyanidins were characterized by HPLC-ESI-MS/MS coupled with a diode array and/or fluorescent detector in seven cultivars of Ribes nigrum (black currant) and Ribes rubrum (red currant, Red Lake), six cultivars of Ribes grossularia (gooseberries), Aronia melanocarpa(chokeberry), and Sambucus nigra (elderberry). Thirty-one different anthocyanins were detected in these berries, but not every anthocyanin was observed in each berry. A number of minor anthocyanins were identified from these berries for the first time. The concentrations of individual anthocyanins in all of the berries were quantified using relevant anthocyanidin 3-glucoside standards. Among the berries studied in this paper and in berries in general, chokeberry has the highest total anthocyanin concentrations [1480 mg/100 g of fresh weight (FW)], whereas the lowest total anthocyanin concentration in the berries studied was found in the gooseberry cv. Careless, which contained only 0.07 mg/100 g of FW. Two cultivars of gooseberries (Marigold and Leveller) did not contain any anthocyanins. Total proanthocyanidin concentrations in the berries studied ranged from 23 to 664 mg/100 g of FW in elderberry and chokeberry, respectively. Procyanidin or prodelphinidin polymers were the predominant components (>65% w/w) in most of the berries. The lipophilic and hydrophilic antioxidant capacities were measured by the oxygen radical absorbance capacity (ORAC(FL)) procedure. The total antioxidant capacity varied from 21 micromol of TE/g of FW in Careless gooseberry to 161 micromol of TE/g of FW in chokeberry. Total phenolics in the berries in general paralleled hydrophilic antioxidant capacity.  相似文献   

9.
Anthocyanins are the most abundant phenolic compounds, widely distributed in fruits and vegetables, and exhibit potent antioxidant capacity. Humans ingest a significant amount of anthocyanins in the daily diet. The objective of the current study was to examine human absorption and metabolism of black raspberry anthocyanins when administered at high doses (2.69 +/- 0.085 g/day). Ten healthy men consumed 45 g of freeze-dried black raspberries daily for 1 week. Urine samples were collected over a 12 h period in 4 h intervals at day 1 and day 7. Urinary anthocyanins were analyzed by high-performance liquid chromatography coupled to a photodiode array detector and a tandem mass spectrometer using precursor ion and product ion analyses. Anthocyanins were excreted in intact forms and metabolized into methylated derivatives in human urine. The urinary excretion of anthocyanins reached a maximum concentration (1091.8 +/- 1081.3 pmol/L, n = 10) during the 4-8 h period after black raspberry ingestion. As compared to the anthocyanin distribution in black raspberries, urinary cyanidin 3-xylosylrutinoside was detected at a higher concentration than that of cyanidin-3-rutinoside.  相似文献   

10.
In recent years, numerous studies have shown that the polyphenolics present in fruit and vegetable products exhibit a wide range of biological effects. However, there is little reliable information on the absorption of glycosylated and acylated anthocyanins in humans. In the present study, the absorption of anthocyanins in humans was investigated after the consumption of a high-fat meal with a freeze-dried blueberry powder containing 25 individual anthocyanins including 6 acylated structures. Nineteen of the 25 anthocyanins present in the blueberries were detected in human blood serum. Furthermore, the appearance of total anthocyanins in the serum was directly correlated with an increase in serum antioxidant capacity (ORAC(acetone), P < 0.01). These results show that anthocyanins can be absorbed in their intact glycosylated and possibly acylated forms in human subjects and that consumption of blueberries, a food source with high in vitro antioxidant properties, is associated with a diet-induced increase in ex vivo serum antioxidant status.  相似文献   

11.
The results of residue determinations of the growth promotors carbadox, tylosin, and virginiamycin in kidney, liver, and muscle from pigs in feeding experiments are described as well as the analytical methods used. Residues of the carbadox metabolite quinoxaline-2-carboxylic acid were found in liver from pigs fed 20 mg/kg in the diet with a withdrawal time of 30 days. No residues were detected in muscle with zero withdrawal time. The limit of determination was 0.01 mg/kg for both tissues. No residues of virginiamycin and tylosin were found in pigs fed 50 and 40 mg/kg, respectively, in the diet, even with zero withdrawal time. Residues of tylosin of 0.06 mg/kg and below were detected in liver and kidney from pigs fed 200 or 400 mg/kg and slaughtered within 3 h after the last feeding.  相似文献   

12.
To clarify how structural diversity of anthocyanins relates to their in vivo function, bioavailability was precisely studied in rats using bilberry (Vaccinium myrtillus L.) extract (Bilberon 25) as an anthocyanin source that contains 15 different anthocyanins. The bilberry extract was orally or intravenously administered to rats, and the plasma levels of each anthocyanin were determined by high-performance liquid chromatography. As the result, all anthocyanins except peonidin 3-O-alpha-L-arabinoside were detectable in the blood plasma. The plasma concentration of anthocyanins as a whole reached the maximum level of 1.2 microM at 15 min after oral administration of 400 mg/kg bilberry extract (153.2 mg/kg as anthocyanins) and then decreased with time. Uptake and decay profiles of each anthocyanin in the plasma were almost the same for all anthocyanins except a few with their maximum after 30 min. Among the anthocyanins carrying the same aglycone, the plasma level after 15 min of oral administration was as follows: galactoside > glucoside > arabinoside. Plasma clearance of anthocyanins after intravenous administration clearly showed that arabinoside disappeared more rapidly than glucoside and galactoside. On the other hand, when anthocyanins carrying the same sugar moiety were compared, the half disappearance time of plasma anthocyanins was in the following order: delphinidin > cyanidin > petunidin = peonidin > malvidin. The bioavailability of anthocyanins was in the range of 0.61-1.82% and was 0.93% as the anthocyanin mixture. The bioavailability of anthocyanins carrying the same aglycone was in the following order: Galactoside showed the highest followed by glucoside and arabinoside for cyanidin and delphinidin, but arabinoside and galactoside showed a higher bioavailability than glucoside for petunidin and malvidin. Anthocyanins recovered in urine and bile during the first 4 h after intravenous administration were only 30.8 and 13.4%, respectively. Anthocyanin profiles in tissues were quite different from those in blood plasma. The major anthocyanins distributed in liver and kidney were the O-methyl anthocyanins such as peonidin, malvidin, and other O-methyl anthocyanins derived from delphinidin, cyanidin, and petunidin-glycosides.  相似文献   

13.
The effect of a simultaneous intake of food or flavonoids on anthocyanins absorption and antioxidant status in pigs was investigated. Twelve male pigs at 27.1 +/- 0.7 kg BW fitted with jugular venous cannulae were maintained in individual metabolic crates. The animals were each given one of three dietary treatments in random order: blackcurrant powder (BC) to give a dose of 100 mg total ACNs/kg BW mixed either with water and sugar (Diet A), cereal (Weet-Bix), milk, and sugar (Diet B), or cereal, milk, sugar, and an additional flavonol (rutin, approximately 100 mg/kg BW) (Diet C). The four major anthocyanins of BC, delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside, and cyanidin-3-rutinoside, were identified and quantified by HPLC-PDA in all three diets. In the pig plasma, four peaks with a reversed pattern to those of anthocyanins in the BC extract were detected. The total amount of anthocyanins absorbed was not significantly different between the three diets, but the rate of absorption and subsequent decline was slower following administration of diet B and C than diet A. All three diets increased antioxidant capacity when measured by the FRAP assay but not when measured by the ORAC and non-protein ORAC assay. However, the increase was delayed and did not appear until 4 h after ingestion, at a time when plasma anthocyanin levels had returned to baseline. The present study demonstrates that the simultaneous intake of food or other flavonoids delays the absorption profile for anthocyanins. Our results also suggest that the increase in antioxidant capacity is not due to dietary anthocyanins but may be due to metabolites that result from anthocyanin consumption.  相似文献   

14.
A purple line cell line (PL) generated from the storage root of purple-fleshed sweet potato (Ipomoea batatas L.) cv. Ayamurasaki produces a complex mixture of anthocyanins, and seven major anthocyanins have been isolated and identified to date. All these anthocyanins are exclusively cyanidin or peonidin 3-sophoroside-5-glucosides and their acylated derivatives. High-performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detection and electrospray ionization tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole instrument was employed to further investigate the anthocyanin composition of the PL extract. Precursor-ion analysis, product-ion analysis, and selected reaction monitoring (SRM) MS/MS experiments were conducted sequentially to screen and characterize anthocyanins in the aqueous extract of the PL cell line. Precursor-ion analysis specifically detected the molecular cations of each category of anthocyanins by scanning the precursors of anthocyanidins (cyanidin, peonidin, and pelargonidin). The detected molecular cation of each anthocyanin was fragmented using product-ion analysis by collisionally activated dissociation (CAD). MS/MS using SRM detection was conducted to further confirm the fragmentation observed during product-ion analysis. In comparison to the commonly used product-ion analysis technique, the combined use of precursor-ion analysis, product-ion analysis, and SRM is particularly useful for positive identification of anthocyanins in complex matrixes and provides important information to confirm the proposed structures. Twenty-six anthocyanins were detected and characterized in the aqueous extract of the PL cell line. Several anthocyanins, including two pelargonidin derivatives, were tentatively identified for the first time in these cells.  相似文献   

15.
Much attention has been focused on food that may be beneficial in preventing diet-induced body fat accumulation and possibly reduce the risk of diabetes and heart disease. Cornelian cherries (Cornus mas) are used in the preparation of beverages in Europe and also to treat diabetes-related disorders in Asia. In this study, the most abundant bioactive compounds in C. mas fruits, the anthocyanins and ursolic acid, were purified, and their ability to ameliorate obesity and insulin resistance in C57BL/6 mice fed a high-fat diet was evaluated. Mice were initially fed a high-fat diet for 4 weeks and then switched to a high-fat diet containing anthocyanins (1 g/kg of high-fat diet) and ursolic acid (500 mg/kg of high-fat diet) for an additional 8 weeks. The high-fat diet induced glucose intolerance, and this was prevented by anthocyanins and ursolic acid. The anthocyanin-treated mice showed a 24% decrease in weight gain. These mice also showed decreased lipid accumulation in the liver, including a significant decrease in liver triacylglycerol concentration. Anthocyanin and ursolic acid treated mice exhibited extremely elevated insulin levels. Both treatments, however, showed preserved islet architecture and insulin staining. Overall, these data suggest that anthocyanins and ursolic acid purified from C. mas fruits have biological activities that improve certain metabolic parameters associated with diets high in saturated fats and obesity.  相似文献   

16.
This study analyzed the content of eight triterpenes (oleanolic acid, ursolic acid, arjunolic acid, asiatic acid, boswellic acid, corosolic acid, madecassic acid, and maslinic acid) in ten vegetables and eight fruits. These compounds at 0.5% were supplied to mice for 4 or 8 weeks. The bioavailability, tissue distribution, and antioxidative protection of these triterpenes were examined. Results showed that triterpenes were detected in eight vegetables and six fruits. Basil and brown mustard contained seven test triterpenes, in the range of 14-102 mg/100 g dry weight. The level of each triterpene in plasma, brain, heart, liver, kidney, colon, and bladder increased as the feeding period was increased from 4 weeks to 8 weeks (P < 0.05). Renal homogenates from mice with triterpene intake had greater antioxidative effects against glucose-induced glutathione loss and malondialdehyde and oxidized glutathione production when compared with those from control groups (P < 0.05). These data support that these triterpenes were absorbed and deposited in their intact forms, which in turn exerted in vivo antioxidative protection.  相似文献   

17.
Formulations containing citrus polymethoxylated flavones (PMFs), mainly tangeretin, or citrus flavanone glucosides, hesperidin and naringin, were evaluated for cholesterol-lowering potential in hamsters with diet-induced hypercholesterolemia. PMF metabolites were also investigated. Diets containing 1% PMFs significantly reduced serum total and very low-density lipoprotein (VLDL) + LDL cholesterol (by 19-27 and 32-40%, respectively) and either reduced or tended to reduce serum triacylglycerols. Comparable reductions were achieved by feeding a 3% mixture of hesperidin and naringin (1:1, w/w), implying lower hypolipidemic potency of the hesperidin/naringin vs PMFs. HPLC-MS analysis identified high serum, liver, and urine concentrations of tangeretin metabolites including dihydroxytrimethoxyflavone and monohydroxytetramethoxyflavone glucuronides and aglycones. Total liver concentrations of tangeretin derivatives corresponded to hypolipidemic concentrations of intact tangeretin in earlier experiments in vitro. This suggests that PMFs are novel flavonoids with cholesterol- and triacylglycerol-lowering potential and that elevated levels of PMF metabolites in the liver might be directly responsible for their hypolipidemic effects in vivo.  相似文献   

18.
Anthocyanins, the red/blue pigments found in plants, are polyphenolic compounds consumed by humans and are part of a normal diet. Recent studies have shown that anthocyanins have substantial bioactivity including antioxidant activity and therefore may have beneficial effects on human health. Anthocyanins are a group of over 500 compounds of diverse structures containing different core phenolic aglycons and conjugated with sugars in a variety of glycosylation patterns. In this study, we have investigated the bioabsorption of 15 anthocyanins with structures containing different aglycons and conjugated sugars extracted from blueberry, boysenberry, black raspberry, and blackcurrant in both humans and rats. Intact and unmetabolized anthocyanins were detected in urine of rats and humans following dosing for all molecular structures investigated, thus demonstrating that anthocyanins with diverse molecular structure and from different dietary sources are bioavailable at diet relevant dosage rates. In addition, the relative concentrations of anthocyanins detected in urine following dosing varied, indicating that differences in bioavailability are due to variations in chemical structure. Our results suggest that the nature of the sugar conjugate and the phenolic aglycon are both important determinants of anthocyanin absorption and excretion in rats and humans.  相似文献   

19.
The phenolic compounds of 25 peach, nectarine, and plum cultivars were studied and quantified by HPLC-DAD-ESIMS. Hydroxycinnamates, procyanidins, flavonols, and anthocyanins were detected and quantified. White and yellow flesh nectarines and peaches, and yellow and red plums, were analyzed at two different maturity stages with consideration of both peel and flesh tissues. HPLC-MS analyses allowed the identification of procyanidin dimers of the B- and A-types, as well as the presence of procyanidin trimers in plums. As a general rule, the peel tissues contained higher amounts of phenolics, and anthocyanins and flavonols were almost exclusively located in this tissue. No clear differences in the phenolic content of nectarines and peaches were detected or between white flesh and yellow flesh cultivars. There was no clear trend in phenolic content with ripening of the different cultivars. Some cultivars, however, had a very high phenolic content. For example, the white flesh nectarine cultivar Brite Pearl (350-460 mg/kg hydroxycinnamates and 430-550 mg/kg procyanidins in flesh) and the yellow flesh cv. Red Jim (180-190 mg/kg hydroxycinnamates and 210-330 mg/kg procyanidins in flesh), contained 10 times more phenolics than cultivars such as Fire Pearl (38-50 mg/kg hydroxycinnamates and 23-30 mg/kg procyanidins in flesh). Among white flesh peaches, cultivars Snow King (300-320 mg/kg hydroxycinnamates and 660-695 mg/kg procyanidins in flesh) and Snow Giant (125-130 mg/kg hydroxycinnamates and 520-540 mg/kg procyanidins in flesh) showed the highest content. The plum cultivars Black Beaut and Angeleno were especially rich in phenolics.  相似文献   

20.
The effect of long-term supplementation of food reductones, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) (2%, w/w), detected in many foodstuffs including soy sauce, and hydroxyhydroquinone (1,2,4-benzenetriol) (HHQ) (1.2%, w/w), detected in coffee, on mouse lipid peroxidation and type IV and I allergy responses was investigated. The effect of supplementation of these reductones combined with NO(2) inhalation (5-6 ppm) was also investigated. Levels of thiobarbituric acid-reactive substances in lung were remarkably increased, and those in kidney and liver were slightly decreased by supplementation of DMHF or HHQ. The degree of 2,4-dinitrochlorobenzene (DNCB)-sensitized lymph node cell proliferation as assessed by lymph node assay was remarkably enhanced by supplementation of DMHF or HHQ. Both the DNCB-sensitized and the trimellitic anhydride-sensitized increases in IgE levels of mice were enhanced to greater extent by supplementation of DMHF or HHQ. In no cases were additive effects of NO(2) inhalation observable. Allergen-sensitized type IV and I allergy responses of mice may be enhanced by supplementation of food reductones, DMHF or HHQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号