首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
遗传算法优化BP网络的汛期降水预测模型   总被引:1,自引:0,他引:1  
针对BP算法易陷入局部极小、收敛速度慢等缺点,遗传算法是全局优化算法和具有很强的全局搜索能力,遗传算法优化BP神经网络初始连接权值和阈值形成混合算法.以安徽宣城市为例,将汛期降水量作为预测对象,前期74项大气环流特征量、500 hPa、100 hPa月平均高度场、月平均海平面气压场和月平均海温场资料中选取预测因子,建立汛期降水短期气候预测模型.结果表明,该方法计算稳定,预报误差小,具有实用价值.  相似文献   

2.
针对BP算法易于陷入局部极小值且收敛速度慢的缺陷,在BP神经网络训练过程中集合GA并行化群体搜索的特点和SA在局部极小处发生概率突跳的特性,基于GASA混合学习策略对BP神经网络进行优化.优化后的BP神经网络被应用在农作物虫情预测中,实验结果表明能够较大幅度提高网络学习的收敛性能和收敛速度,并一定程度上减少了算法的复杂性.  相似文献   

3.
对时间序列水质预测问题进行研究,提出了基于最优加权法的组合预测模型.综合利用了ARIMA预测模型、人工神经网络模型和指数平滑法对水质数据进行预测,再将它们的结果利用最优加权组合法进行组合,得到组合预测模型结果.将组合预测模型应用到广州长洲水质预测工作中,得到了较好的预测结果.组合预测模型结果的精度高于单一模型结果.组合预测模型能平衡单一模型的偏差,具有更好的适用性和更高的精度.  相似文献   

4.
对某医院2010-2012年中药的销售及变化情况进行了对比分析。为了更好地保证医院中药的库存数量,提出了一种基于遗传算法优化BP神经网络组合模型,用改进的遗传BP神经网络进行中药销售量预测,并将预测结果和单纯使用BP网络的预测结果进行比较,实验证明遗传BP神经网络模型具有更高的预测准确度,为医院中药销售及科学管理中药库存量提供科学依据。  相似文献   

5.
基于遗传算法优化的BP神经网络进行水稻氮素营养诊断   总被引:2,自引:0,他引:2  
应用遗传算法优化BP神经网络进行水稻氮素营养诊断,为水稻的合理施氮提供理论指导。水稻田间试验供试品种为‘两优培九’,设置4个施氮水平(0、210、300、390 kg·hm-2)。在水稻幼穗分化期,扫描获取水稻顶部第三完全展开叶图像,并通过图像处理技术获取19维水稻图像中的颜色和几何形态特征,采用归一化处理、离散小波变换及主成分分析对原始数据进行预处理,并应用遗传算法优化的BP神经网络进行水稻氮素营养诊断。该方法建立的水稻氮素营养诊断模型较单一BP神经网络模型和传统遗传算法优化BP神经网络模型好,模型测试所得4个施氮水平的平均识别率分别为100.000%、99.000%、97.000%、100.000%,测试集样本平均总识别率达到99.000%。基于遗传算法优化的BP神经网络所建立的水稻氮素营养诊断模型具有较强的学习能力和泛化能力,能够很好地识别出水稻氮素营养的缺失,表明运用该方法能够很好地进行水稻氮素营养诊断识别。  相似文献   

6.
孙学浩  孙惠合 《安徽农业科学》2009,37(24):11649-11650
秋冬连旱是影响宿州冬小麦、油菜等越冬作物生长发育的重要因素。以Z指数≤一0.8为标准,确定宿州市秋冬持续重旱年份序列,建立GM(1,1)预测模型,并应用BP人工神经网络(BP—ANN)对残差进行拟合,对GM(1,1)预测模型进行修正。结果表明,拟合结果较单一的GM(1,1)模型有一定提高。预测2008年后的下一个宿州市秋冬(10月-2月)持续重旱年度发生在2017~2018年,对当地农业生产和防灾减灾有一定的参考价值。  相似文献   

7.
以大豆叶面积指数(Leaf area index, LAI)反演为研究目标,利用PROSAIL模型和遗传算法优化后的BP神经网络模型,分别对重组自交系(Recombinant Inbred Lines, RIL)和自然野生大豆种群的LAI进行反演。结果表明,在对人工定向培育的RIL大豆种群冠层叶片LAI反演中,PROSAIL模型表现出了更优异的反演能力,而对品种繁多的自然野生大豆种群LAI反演中,遗传算法优化后的BP神经网络模型表现出了更好的适用性,并且上述2种模型在始粒期(R5)时性能最佳,PROSAIL模型和遗传算法优化后的BP神经网络模型R~2分别为0.89和0.85,RMSE分别为0.11和0.13,EA均为97%,典型生育期内的反演性能均优于全生育期综合反演性能。因此,针对同一农作物不同种群的表型特征反演,需要根据研究对象的特征来选择合适的模型,以便于精确的估测大豆长势情况,为农作物的规模化育种监测提供数据支持。  相似文献   

8.
针对BP算法易陷入局部极小、收敛速度慢等缺点,遗传算法是全局优化算法和具有很强的全局搜索能力,遗传算法优化BP神经网络初始连接权值和阈值形成混合算法。以安徽宣城市为例,将汛期降水量作为预测对象,前期74项大气环流特征量、500 hPa、100 hPa月平均高度场、月平均海平面气压场和月平均海温场资料中选取预测因子,建立汛期降水短期气候预测模型。结果表明,该方法计算稳定,预报误差小,具有实用价值。  相似文献   

9.
基于BP神经网络的我国农民收入预测模型   总被引:1,自引:0,他引:1  
依据1978~2008年影响我国农民收入因素的相关数据,选取从事农业的人口、第一产业产值、乡村就业人员数等13个指标,依据标准化方法和BP神经网络方法,建立了关于农民收入的人工神经网络模型,并进行具体分析。结果表明,模拟值与真实值吻合较好,改进BP算法的神经网络模型预测精度高,收敛速度快,具有良好的泛化能力。在此基础上,提出了增加农民收入的建议:一是推进城镇化进程;二是发展农村中小企业;三是鼓励集约经营;四是加强农村基础设施建设和农业科技投入。  相似文献   

10.
以Matlab神经网络和遗传算法工具箱为平台,用量化共轭梯度法改进标准BP算法,采用GA优化BP网络的隐层神经元数目、初始权重,最后以香格里拉县ETM+图像为数据源,在DEM地形数据辅助下,训练网络使其收敛,仿真结果表明该方法优于最大似然分类法.  相似文献   

11.
提出一种基于遗传算法优化BP神经网络的方法预测日光温室湿度环境因子。实测日光温室内影响空气湿度的环境因子组成数据样本作为神经网络的输入,采用基于实数编码的遗传算法替代随机设定神经网络的初始权阈值,然后通过改进的BP算法在由遗传算法确定的搜索空间中对网络进行精确训练。模型预报值和实测值基于1:1线的决定系数R2和预测平均相对误差MSE分别为0.9857和3.1%。结果表明,遗传算法优化BP神经网络预报模型收敛速度快、预测精度高。可为日光温室的湿度环境调控制提供理论依据和决策支持。  相似文献   

12.
结合遗传算法与倒传递神经网络进行工业股票指数预测 ,使用 5个输入变量 :周成交额增减幅、周振荡幅度、周涨跌幅、5日EMA波动、DIF波动值 ,并将下周涨跌幅设为输出目标进行训练 ,以取得较理想的预测结果。对于传统上选择适合的神经网络拓扑结构效率较低的问题 ,本文对于遗传算法的引入大大提高了搜索到最优结构的速度。  相似文献   

13.
基于BP神经网络股价预测的一种改进方法   总被引:1,自引:0,他引:1  
为提高神经网络经济预测的泛化能力,对神经网络预测数据处理方法进行了改进,把对数据的归一化变为对数据增长量的归一化,因而只要被预测的增长量不超过以往的历史数据增长量,则不会发生外延问题。根据这一思路,采用个股(中国石化)收盘价的数据,通过对收盘价的增长量进行了归一化,得到新的时间序列,将该时间序列视为一个从输入到输出的非线性映射,用BP神经网络进行非线性映射的逼近。对网络进行学习与训练的仿真试验后,预测结果与实际结果的比较说明,改进方法有效。  相似文献   

14.
色板对葱蓟马诱捕量的BP神经网络模型预测   总被引:2,自引:0,他引:2  
利用羧甲基纤维素钠和甘油为主要原料配制的水溶性胶黏着剂制作3种颜色粘板,在露天菜地的同一处地点进行田间蓟马诱捕测试。将测试结果作为BP神经网络模型的训练样本与预测样本进行建模分析,结果表明,黏合剂中诱虫物质的添加因素对葱蓟马田间诱捕量的影响权重最大,蓝色大型粘板诱捕蓟马效果最好,模型对预测样本的预测值与实际观测值基本吻合。  相似文献   

15.
基于BP神经网络对苹果呼吸强度的预测   总被引:1,自引:0,他引:1  
应用BP神经网络,通过苹果贮藏期间多维数据与呼吸强度的相关分析确定网络的拓扑结构,建立苹果呼吸强度的人工神经网络模型.仿真结果表明,该神经网络能很好地拟合不同贮藏条件下的呼吸强度,模型预测精度达到90%以上.同时,通过遗传算法优化BP神经网络的初始权值和阈值矩阵,使神经网络的预测精度进一步提高.  相似文献   

16.
清代书院课艺总集多为连续出版物,或具有连续出版物的刊行初衷。刊期短则一季,多则一年或数年。经费充足与否,会影响刊期。发表周期多为一年至五年,也有十余年的。用稿率以10%~20%居多,偶见“关系稿”。时文的用稿标准是“清真雅正”。题目多为官师所拟。一般全文刊登,也偶有“论点摘编”。多经润色,并附录评点。有的以袖珍本刊行,有的宣称“翻刻必究”,标出定价,附载广告。稿费已在膏火费中预支,优秀作品可被转载。从本质属性和诸多要素来看,书院课艺总集实开今日“大学学报”、“学术集刊”之先河。  相似文献   

17.
提出一种基于灰色理论BP神经网络的网络入侵预测方法。针对传统的预测方法难以高效预测大规模网络的复杂攻击行为,利用基于灰色理论的BP神经网络算法,对网络传输中的数据包建立模型、分析和检测识别,结果表明了改进后的入侵预测模型具有更好的预测精确度和效率。  相似文献   

18.
为了准确预测马铃薯气候产量达到趋利避害的目的,利用1980—2015 年山西省大同市马铃薯产量及同期国家基准观象台观测到的气候资料,选用传统的统计回归方法和BP神经网络方法分别建立马铃薯产量预报模型。结果表明:通过二次函数曲线和最小二乘法确定马铃薯敏感期的气候因子是气温、日照和降水,其中降水对马铃薯产量的影响最大。通过改进的气候产量算法可以更好地反映气候要素与作物单产之间的函数关系。在Matlab 平台上训练精度设为0.005、学习率0.01 的BP神经网络方法可以很好地逼近非线性函数。用大于1/3 样本进行预报检验表明,在预报精度和拟合精度上,BP神经网络模型都明显优于传统的回归模型,BP神经网络方法在马铃薯产量预报中有具有非常广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号