首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyll production by wheat (Triticum aestivum L. ‘Mericopa’) and corn (Zea mays L. Merit) was severely curtailed by the experimental herbicide l-(m-trifluoromethylphenyl)-3-chloro-4-chloromethyl-2-pyrrolidone (R-40244). A 96% loss in chlorophyll content was observed in wheat seedlings treated with 320 μmol/1 R-40244. In corn 320 μmol/1 R-40244 caused a 40% drop in chlorophyll content. Carotenoid production in both wheat and corn was inhibited by R-40244, 320 μmol/1 of the herbicide causing a 97% reduction in wheat and a 44% reduction in corn. The inhibition of carotenoid production which, in turn, allows chlorophyll to be photooxidized, may represent the mode of action of R-40244. Hill reaction activity was not detected for R-40244.  相似文献   

2.
The absorption of norflurazon by 1-cm segments cut from the apical 5-cm roots of sicklepod (Cassia obtusifolia L.), corn (Zea mays L. cv. Sunbelt 1860), and cotton (Gossyipium hirsutum L. cv. DPL 90) was investigated. Norflurazon absorption by all root tissues was rapid in the first 10 min but there was very little increase thereafter up to 60 min. Norflurazon also penetrated the entire root tissue volume within 30 min, indicating its movement into both the apoplast and the symplast of root cells by simple diffusion. The initial (0–10 min) rate of norflurazon absorption was faster in sicklepod and cotton than in corn. Corn also accumulated less 14C than did the other species. Norflurazon diffused freely out of sicklepod and corn root tissues but not out of cotton roots. Metabolism was not the basis for this differential retention as norflurazon was not degraded by the root tissues over a 24-hr period. These experiments show that differential accumulation and retention of norflurazon by root tissues was not related to the selectivity of this herbicide among these three species.  相似文献   

3.
Wild oat (Avena fatua L.) plants sprayed at the 2-or 3-leaf stages of growth with diclotop-methyl developed chlorosis over the entire leaf blade of all leaves. The leaves became necfrotic 7days after spraying Shool growth was inhibited. In wheat (Triticum aesicum L cv.Waldron) discrete chlorotic areas developed only where the herbicide convicted the 2nd or 3rd leaf with no visible injury so new growth uf'ter treutment. Growth inhibition of susceptible oat (Avena sativa L. cv. Garry) was sensitive to placement of diclutop-methyl near the upica and meristematic sites of the plant. Chlorosis and necrosis were independent of herbicide placement. Selective herbicide placement induced chlorosis only or both chlorosis and growth inhibition Root growth in wild oat and barley (Hordeum rulgare L. cv. Dickson) was strongly inhibited by 1–0 μM diclofop-methyl. Wild oat shoots were killed when seedlings were root-treated with 10 μM diclofop-melhyl. The 100 μM rool treatment killed barley shoots but only stunted the growth of wheat shoots by approximately 50%. In root-ireated wheat plants the shoots were turgid and developed a light purple colour, whereas in foliar-treated plants the shoots developed discrete chlorotic areas.  相似文献   

4.
The effect of isoproturon on the ultrastructure of the photosynthetic apparatus, ribulose bisphosphate carboxylase activity, protein and chlorophyll content, and the grain yield was investigated in two wheat cultivars (Triticum sativum L. cvs Castan and Esquilache) and a weed (Lolium rigidum Gaud.). Field experiments used applications of 1–65 and 2–5 kg a.i. ha?1 isoproturon post-emergence, and growth chamber experiments used nutrient solution with the addition of isoproturon (1·7 × 10?4 M). The ultrastructure of the photosynthetic apparatus of the cv. Esquilache was much affected by the herbicide. In the case of cv. Castan, slight disorganization of the grana and intergrana was observed. Isoproturon decreased the activity of ribulose bisphosphate carboxylase. A decrease in protein and chlorophyll content was also observed in the cv. Esquilache and in L. rigidum. These alterations were much less evident in the cv. Castan, where, moreover, no loss of protein occurred. The yield of the treated cv. Castan plants was slightly greater than that of the control plants in two consecutive years. However, the yields of the cv. Esquilache were significantly less when the herbicide was applied in the first year at commencement of tillering in a dry season but not when applied at an advanced stage as in the second year in a wet season.  相似文献   

5.
Spring wheat (Triticum aestivum L. “Caribo”) was grown in vermiculite containing methabenzthiazuron (N-(benzothiazol-2yl)-NN′-dimethylurea) presowing. Effects of the herbicide on plant development and plant composition were analysed up to an age of 4 weeks. Inhibition of photosynthetic oxygen evolution represented the primary effect induced by the herbicidal treatment and led to a decreased concentration of soluble reducing sugars. Photosynthetic activity however recovered after 3 weeks and even increased above control values. Secondary effects following methabenzthiazuron treatment included a delayed chlorophyll breakdown, a decreased chlorophyll a/b ratio, enlarged chloroplasts, an increased concentration of soluble amino acids and of soluble protein, and an increased in vitro nitrate reductase activity. These responses are taken to indicate an increased photosynthetic and metabolic capacity in methabenzthiazuron treated wheat plants. Comparable results can be obtained with plants grown at low light intensities. It is concluded that the “physiological effects” observed in wheat plants after treatment with methabenzthiazuron are similar to a natural adaptation reaction to low light intensities. It is assumed that this adaptation reaction is caused by a low concentration of soluble reducing sugars. Experiments with plants growing at different light intensities indicated that effects due to herbicidal action were more pronounced at high light intensities. Measurements on daily fluctuations revealed a peak around noon for the sugar content and the nitrate reductase activities measured in vivo as well as in vitro. In vivo nitrate reductase activity in plants treated with 5 parts/million methabenzthiazuron was very low, presumably because of lack of sugars for the production of NADH. The protein concentration was increasing and the amino acids were decreasing during the day in herbicide treated plants, possibly indicating increased protein synthesis in the light in plants treated with methabenzthiazuron.  相似文献   

6.
Norflurazon (0, 0.1, 0.2, 0.4, or 0.8 μM) was applied concomitantly with desmethyl norflurazon (DMN), dichloropyridazinone (DCP), or the wrong isomer (WI) of norflurazon (0, 0.1, 0.2, 0.4, 0.8, 1.6, or 3.3 μM) to wheat (Triticum aestivum L. cv. Holley) grown in sand. After 14 days, carotenogenesis was inhibited by norflurazon and the inhibition was partially reversed by DMN, DCP, and WI. These reversals were observed at norflurazon concentrations ≤250 ≤ ∼0.823 μM in the potting medium. Carotene contents in norflurazon (0.4 μM) + no isomer, DMN, WI, or DCP (3.3 μM) were 5.4, 40.7, 28.6, and 22.2%, respectively, of that present in the untreated control. Therefore, these materials might function as antidotes to soil residues of norflurazon. Partitioning of norflurazon and DMN among triolein (TG), phosphatidylcholine (PC), and water was attained via isopycnic centrifugation. Norflurazon was highly soluble in PC and accumulated in PC. DMN was not soluble in TG and was soluble in water and PC at a ratio of 0.5 Change in water solubility when norflurazon is demethylated to DMN may be the basis for lack of bleaching influence of DMN. DMN, DCP, and WI partially reversed norflurazon carotenogenesis inhibition in the concentration range of norflurazon associated with phytoene synthesis and the low range of norflurazon concentrations associated with phytoene desaturase.  相似文献   

7.
The herbicidal activity of the pyridine derivative LS 82–556 [(S)3-N-(methylbenzyl)carbamoyl-5-propionyl-2,6-lutidine] has been studied on green or etiolated seedlings of cucumber (Cucumis sativus L. cv Vert Long Maraîcher), wheat (Triticum aestivum L. cv Fidel), and maize (Zea mays L. cv Monclair). The symptoms were strictly light dependent, and consisted of bleaching, wilting, and desiccation of leaves and stems. In green seedlings pretreated for 24 hr in the dark with 10 μM LS 82–556, increases in ethane evolution and thiobarbituric acid-reacting material content could be detected after a 3-hr exposure to high light intensity (400 μE m−2 sec−1 photosynthetically active radiation). Similar increases were also detected in etiolated seedlings. Electron microscope observations of treated tissues exposed to light for 6 hr or more revealed structural damage at the level of cellular membranes (chloroplast envelope, tonoplast, and plasma membrane). In cotyledons or leaves grown in the light, activity of LS 82–556 required the presence of chloroplastic pigments. All the above results suggest that as for diphenyl ether herbicides, the mechanism of action of LS 82–556 involves photooxidative reactions leading to the degradation of fatty acids. A further analogy between the two types of herbicide action comes from their similar requirement for an operating photosynthetic electron flow when they are administered to green tissues.  相似文献   

8.
Losses in grain yield prevented by controlling weeds were measured in 59 fields of (southern hemisphere) spring-sown wheat (Triticum aestivum L.) (cv, Otane) and 45 fields of spring-sown barley (Hordeum vulgare L.) (cv. Corniche) in five consecutive growing seasons from 1988/89 until 1992/93 in the Canterbury region of New Zealand. The losses were measured as the differences in yield between weeded and non-weeded plots located in randomly positioned pairs in the fields. In the first 2 years, the weeding was by push hoe in‘organically grown crops. For the last 3 years, the fields were under prophylactic herbicide regimens with nonweeded plots created by excluding commercial herbicide applications (made mostly in October for wheat and November for barley) with polyethylene sheets placed temporarily over the plots. For each season the distributions of yield losses were modelled using the normal distribution and probabilities of ‘breaking even’ on herbicide use derived by substituting cumulative probability density functions into a simple break-even model for herbicide use. The model assumed that herbicide application in the current crop has no flow-on economic effect for succeeding crops. The mean annual yield losses prevented by herbicide application were positively correlated with September and October rainfall for wheat and bailey respectively. As a consequence, the probabilities of breaking even on herbicide use increased with increasing spring rainfall. Using historical rainfall records, probabilities of breaking even were estimated for each of the 48 years from 1947 to 1994. Averaging over these years, the analysis revealed that at current grain prices prophylactic use of the commonly applied herbicides is likely to be uneconomic in 24% (95% confidence limits 6% and 50%) of fields of average-yielding Otane wheat and in 26% (95% confidence limits 1% and 91 %) of fields of average-yielding Corniche barley in Canterbury. It was concluded that there is potential for withholding herbicide treatments without jeopardizing profitability in these crops, particularly in seasons with low spring rainfall.  相似文献   

9.
Laboratory studies have shown that the amounts of glutathione (GSH) and cysteine are higher in grass species that are moderately tolerant, such as wheat (Triticum aestivum L., cv. Fredrick), and moderately susceptible, such as barley (Hor deum vitlgare L., cv. Legér) and triticale (cv. OAC Trillium), to fenoxaprop-ethyl (FE) than in species that are very susceptible to the her bicide, such as oat (Avena saliva L., cv. OAC Woodstock), wild oat (Avena fatua L.), yellow foxtail (Setaria glanca (L.) Bcauv.), large crab grass (Digitaria sanguinalis (L.) Scop.) and bar nyard grass (Echinochloa crus-galli (L.) P.B.). The safener, fenchlorazole-ethyl (FCE) was found to increase and decrease, respectively, the amounts of GSH and cysteine in the moderately tolerant and moderately susceptible species but had no effect on the susceptible species. It is sug gested that in the moderately tolerant and moderately susceptible species, especially following FCE treatment, more GSH is available to detoxify the herbicide. Glutathione-S-tranferase activity (GST) for FE was found to be very low in all of the species tested. In vitro experiments at physio-logical pH. demonstrated that FE may conjugate with GSH nonenzymatically. Therefore, it is suggested that nonenzymatic conjugation of fenoxaprop-ethyl with glutathione may be an important mechanism for tolerance of some grasses to this herbicide.  相似文献   

10.
D. COUPLAND 《Weed Research》1989,29(4):289-297
The performance of fluazifop-butyl against Elymus repens (L.) Gould was significantly influenced by the environmental conditions in which the plants had grown prior to treatment as follows: soil moisture deficit (greatest reduction of herbicide performance) > cool temperatures > low light intensity. The level of control under conditions in which none of these factors was reduced (so-called ‘standard’ conditions) was similar to that observed for‘low light’regime plants. Significant effects of environment on spray retention, foliar uptake and amounts of herbicide translocated to the roots and rhizomes were observed. The lowest rates of herbicide uptake were found with plants grown under cool conditions, the greatest amount of basipetal herbicide translocation being associated with low light intensities. Rates of herbicide de-esterification were much lower in plants grown under low light intensities, cool temperatures, or soil moisture deficits than in those plants grown under the ‘standard’ conditions. This result was confirmed by studies of herbicide deesterification using cell-free leaf homogenates.  相似文献   

11.
In aqueous solution, the herbicide pyrazolate [4‐(2,4‐dichlorobenzoyl)‐1,3‐dimethyl‐5‐pyrazolyl p‐toluenesulfonate] is rapidly hydrolyzed to destosyl pyrazolate (DTP), 4‐(2,4‐dichlorobenzoyl)‐1,3‐dimethyl‐5‐hydroxypyrazole, which is an active form of the herbicide. The objective of this study was to examine the effect of pyrazolate and DTP on carotenoids synthesis in susceptible weed, early watergrass (Echinochloa oryzicola Vasing.). Furthermore, their in vitro effect on 4‐hydroxyphenylpyruvate dioxygenase (HPPD) was determined. Roots of the plants at the two‐leaf stage were soaked for 24 h into pyrazolate (5 × 10–5 mol L?1) or norflurazon (10–6 mol L?1) solution containing 0.5% volume of acetone. At the first sampling time (3 days after treatment: 3 DAT), the chlorophyll content in the third leaves of pyrazolate‐treated plants were not different compared with the untreated control, but it was decreased between 3 and 6 DAT. The declining pattern of β‐carotene in the third leaf of early watergrass was very similar to that of chlorophyll. Both herbicides induced greater accumulation of phytoene in the third leaves of early watergrass 3 DAT, and the levels were kept until 9 DAT. However, feeding of homogentisate reduced the phytoene accumulation only in pyrazolate‐treated plants, suggesting the site of action of the herbicide located in the pathway of plastoquinone synthesis. In a HPPD assay, DTP revealed to inhibit the enzyme with an IC50 value of 13 nmol L?1 and that of pyrazolate was 52 nmol L?1. In the pyrazolate solution used in the assay, some of the herbicide possibly has been hydrolyzed to DTP. From the all results obtained, it is strongly suggested that pyrazolate inhibits carotenoids synthesis and causes bleaching on the developing leaves by the similar mechanism with norflurazon, but its action site is not phytoene desaturase and is HPPD.  相似文献   

12.
Weeds are considered as a major threat to the production of oilseed Brassica crops. The use of herbicides that are safe for crops and effective in controlling weeds is crucial for the agronomists and farmers. Propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), a derivative of 2-pyrimidinyloxy-N-aryl benzoate, is a new herbicide used in the rapeseed field. To evaluate the tolerance of Brassica species against this new herbicide, two cultivars of rapeseed Brassica napus cv. ZS 758 and Brassica rapa cv. Xiaoyoucai were tested by a foliar spray of ZJ0273 at the rate of 100, 500 and 1000 mg/L and a currently used ALS (acetolactate synthase)-inhibiting herbicide bispyribac-sodium (BS) at the rate of 100 mg/L. The results showed that both the cultivars of Brassica were less affected by ZJ0273 as compared to BS. Increasing level of ZJ0273 herbicide from 100 to 1000 mg/L increased the stress for the plants of both the cultivars as indicated by enhanced accumulation of malondialdehyde content. The activities of ALS and antioxidant enzymes (superoxide dismutase and peroxidase), soluble protein and sugar contents, photosynthetic system (SPAD value, photosynthetic rate and chlorophyll fluorescence) as well as the agronomic characters also declined consistently with each successive increase in ZJ0273 concentration. In general, the plants treated with 100 mg/L ZJ0273 recovered from the herbicide stress after 28 days. B. napus showed more tolerance than B. rapa to the new herbicide. Nevertheless, BS application at 100 mg/L did not allow the plants of both the cultivars to recover from the herbicidal stress.  相似文献   

13.
Cinidon-ethyl (BAS 615H) is a new herbicide of isoindoldione structure which selectively controls a wide spectrum of broadleaf weeds in cereals. The uptake, translocation, metabolism and mode of action of cinidon-ethyl were investigated in Galium aparine L, Solanum nigrum L and the tolerant crop species wheat (Triticum aestivum L). When plants at the second-leaf stage were foliarly treated with cinidon-ethyl equivalent to a field rate of 50 g ha−1 for 48 h, the light requirement for phytotoxicity and the symptoms of plant damage in the weed species, including rapid chlorophyll bleaching, desiccation and necrosis of the green tissues, were identical to those of inhibitors of porphyrin synthesis, such as acifluorfen-methyl. The selectivity of cinidon-ethyl between wheat and the weed species has been quantified as approximately 500-fold. Cinidon-ethyl strongly inhibited protoporphyrinogen oxidase (Protox) activity in vitro, with I50 values of approximately 1 nM for the enzyme isolated from the weed species and from wheat. However, subsequent effects of herbicide action, with accumulation of protoporphyrin IX, light-dependent formation of 1-aminocyclopropane-1-carboxylic acid-derived ethylene, ethane evolution and desiccation of the green tissue, were induced by cinidon-ethyl only in the weed species. After foliar application of [14C] cinidon-ethyl, the herbicide, due to its lipophilic nature, was rapidly adsorbed by the epicuticular wax layer of the leaf surface before it penetrated into the leaf tissue more slowly. No significant differences between foliar and root absorption and translocation of the herbicide by S nigrum, G aparine and wheat were found. After foliar or root application of [14C]- cinidon-ethyl, translocation of 14C into untreated plant parts was minimal, as demonstrated by combustion analysis and autoradiography. Metabolism of [14C]cinidon-ethyl via its E-isomer and acid to further metabolites was more rapid in wheat than in S nigrum and G aparine. After 32 h of foliar treatment with 50 g ha−1 of the [14C]-herbicide, approximately 47%, 36%, and 12% of the absorbed radioactivity, respectively, were found as unchanged parent or its biologically low active E-isomer and acid in the leaf tissue of G aparine, S nigrum and wheat. In conclusion, cinidon-ethyl is a Protox-inhibiting, peroxidizing herbicide which is effective through contact action in the green tissue of sensitive weed species. It is suggested that a more rapid metabolism, coupled with moderate leaf absorption, contribute to the tolerance of wheat to cinidon-ethyl. © 1999 Society of Chemical Industry  相似文献   

14.
RH‐1965 is a new bleaching herbicide which causes newly developing leaf tissue to emerge devoid of photosynthetic pigments. Mode‐of‐action studies revealed that RH‐1965 inhibited the accumulation of both total chlorophyll and β‐carotene. Concomitantly, it induced the accumulation of the β‐carotene precursors, phytoene, phytofluene and, in particular, ξ‐carotene. Inhibition of chlorophyll accumulation by RH‐1965 is attributed to the photo‐oxidative destruction of chlorophyll in the absence of β‐carotene because RH‐1965 blocked chlorophyll accumulation to a greater extent under high light (50–330 µE m−2 s−1) than under low light (0.8 µE m−2 s−1) conditions. Radish (Raphanus sativus L) and barnyardgrass (Echinochloa crus‐galli (L) Beauv) were very senstive to RH‐1965. Under high light (330 µE m−2 s−1), the I50 values for inhibition of chlorophyll accumulation were 0.10 and 0.15 µM , respectively. Wheat (Triticum aestivus L), on the other hand, was much less sensitive to RH‐1965 (I50 = 1.4 µM ). It is concluded that the mode of action of RH‐1965 involves the inhibition of ξ‐carotene desaturation. © 2000 Society of Chemical Industry  相似文献   

15.
D. COUPLAND 《Weed Research》1987,27(5):329-336
The performance of sethoxydim on Elymus repens (L.) Gould was studied under contrasting levels of humidity, light intensity, temperature, soil moisture and simulated rainfall using controlled environment chambers. Over a 24-h post-spraying period, increases in humidity and temperature markedly enhanced herbicide performance, while effects of light intensity were less pronounced. Soil moisture deficit significantly reduced herbicide performance, but there were no adverse effects of wet soil conditions (twice field capacity) on activity. The effects of simulated rain depended upon herbicide dosage, time interval between spraying and the onset of rain, and rain intensity. A low rain intensity of 0.5 mm h?1 did not reduce herbicide performance even when applied 10 min after spraying. The longer term studies, over 4 weeks, showed increases in herbicide activity with higher temperatures but lower light intensities.  相似文献   

16.
Wheat (Triticum aestivum L. cv Holley) was grown for 15 days in sand into which S-ethyl dipropylthiocarbamate (EPTC) (0, 15.6, 31.25, 62.5, or 125.0 μg/kg) had been incorporated. Growth was decreased more by EPTC under high light intensity (270 μein/m2/sec) than under low light (20 μein/m2/sec) intensity. Wheat grown in the dark did not respond to EPTC at these concentrations. In high light intensity, plastoquinone-9, plastohydroquinone-9, α-tocopheroquinone, and α-tocopherol contents (nanomoles per gram fresh weight) increased as EPTC concentration increased. Similar but less marked results occurred at the low light intensity. Plastohydroquinone-9/plastoquinone and α-tocopherol/α-tocopheroquinone ratios increased at both light intensities as EPTC concentration increased. This indicated an EPTC-induced inhibition of plastohydroquinone and α-tocopherol epoxidation. Chlorophyll a and b and total carotenoid contents increased as EPTC concentration increased in plants grown at high light intensities. Changes in the membrane electron carriers contents per unit of chlorophyll or carotenoid (micrograms per milligram of pigment) occurred. As a tentative hypothesis, it is suggested that transmembrane electron transport systems were inhibited, but growth in size (fresh weight per pot) was inhibited more than was synthesis of the various pigments and quinones. Thus, a separation of growth and metabolic response to EPTC was demonstrated.  相似文献   

17.
Crop variety effects on herbicide performance is not well characterised, particularly for sweet corn, a crop that varies greatly among hybrids in competitive ability with weeds. Field studies were used to determine the effects of crop competitive ability on season‐long herbicide performance in sweet corn. Two sethoxydim‐tolerant sweet corn hybrids were grown in the presence of Panicum miliaceum and plots were treated post‐emergence with a range of sethoxydim doses. Significant differences in height, leaf area index and intercepted light were observed between hybrids near anthesis. Across a range of sub‐lethal herbicide doses, the denser canopy hybrid Rocker suppressed P. miliaceum shoot biomass and fecundity to a greater extent than the hybrid Cahill. Yield of sweet corn improved to the level of the weed‐free control with increasing sethoxydim dose. The indirect effect of herbicide dose on crop yield, mediated through P. miliaceum biomass reduction, was significant for all of the Cahill’s yield traits but not Rocker. These results indicate that a less competitive hybrid requires relatively more weed suppression by the herbicide to not only reduce weed growth and seed production, but also to maintain yield. Sweet corn competitive ability consistently influences season‐long herbicide performance.  相似文献   

18.
To determine whether light quality affects the incidence of disease, we exposed cucumber (Cucumis sativus L. cv. Jinyan No. 4) plants at the 4-leaf stage to white and other monochromatic lights and tested the effects on plant response to Sphaerotheca fuliginea, defence-related gene expression and metabolic changes. Exposure to red light resulted in higher levels of H2O2 and salicylic acid (SA), and stronger expression of defence genes such as PR-1 than exposure to white or other monochromatic lights. In comparison, plants grown under purple and blue light had higher activities of phenylalanine ammonia-lyase (PAL) and polyphenoloxidase (PPO) and higher level of flavonoids than plants grown under other lights. Furthermore, plants grown under red light were more resistant whilst plants grown under other monochromatic lights were less resistant to Sphaerotheca fuliginea than plants grown under white light. These results suggest a role of red light in light-enhanced resistance, which correlates with enhanced SA-dependent signaling pathway.  相似文献   

19.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

20.
Herbicide applications are meant to eliminate weed competition; however, herbicides may also impose abiotic stress on registered crops. Leaf tissue carotenoid pigments play vital roles in the photoprotection of photosynthetic membranes and contribute to non-photochemical quenching (NPQ) of excitation energy, both important to plant environmental stress tolerance. Our research objectives were to characterize leaf tissue pigments and chlorophyll fluorescence parameters following post-emergence herbicide applications (simulating an abiotic stress) to sweet corn (Zea mays var. rugosa) genotypes of differential herbicide sensitivities. Post-emergence herbicide applications of combinations of mesotrione (105 g ai/ha) and atrazine (560 g ai/ha) were applied to ‘Merit’ (sensitive), ‘Temptation’ (tolerant), and ‘Incredible’ (moderately sensitive) sweet corn genotypes. Leaf tissues were sampled after herbicide applications and measured for chlorophyll fluorescence parameters, and the same tissues were analyzed for carotenoid and chlorophyll pigments. Leaf pigments and chlorophyll fluorescence were not affected by any herbicide treatment; however, data revealed significant differences between genotypes for leaf tissue antheraxanthin, β-carotene, zeaxanthin, chlorophyll a/b ratios, and for values of Fo, Fm, Fv, and NPQ, with ‘Merit’ leaf tissue having higher values than the other two genotypes evaluated. Results demonstrate that genotypic sensitivities to certain post-emergence herbicides may be related to concentrations of photo-protective carotenoids in sweet corn leaf tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号