首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
试验以T_4代转BADH基因玉米自交系(受体亲本为"丹988")为基础材料,逐年加代纯化,通过PCR检测、Southern blotting以及实时荧光定量PCR法(Quantitative real-time PCR,qRT-PCR)来验证BADH基因在T_5和T_6代株系中能否稳定的遗传及表达,同时对T_6代转化株系进行抗旱耐盐性鉴定,对T_5与T_6代转基因玉米各株系的农艺性状进行了调查分析。结果表明:外源BADH基因以单拷贝的形式整合到玉米基因组中,且BADH基因在转基因植株各组织中均有表达,其中在叶中的表达量最高,达到1.1,而在根中的表达量只有0.1;在不同株系间的表达量也不同。对T_6代阳性植株进行干旱与盐胁迫处理后,测定脯氨酸、POD活性等生理生化指标,结果表明都明显高于受体亲本;T_5与T_6代转基因株系在株高、茎粗、穗长等农艺性状上与受体亲本无差异。该试验获得了与对照受体亲本"丹988"相比抗旱耐盐性较强、且农艺性状无显著差异的转基因玉米自交系。  相似文献   

2.
本研究通过农杆菌介导法将拟南芥耐盐基因AtCHX23导入玉米自交系郑58中,用PCR、Southern blot和RT-PCR法对转化玉米进行检测,并在150 mmol/L盐(NaCl)胁迫下对T3代转基因玉米和野生型进行耐盐性分析。结果显示:共获得26株转基因阳性植株;挑选长势较好的2个PCR阳性株系进行Southern blot鉴定,确定AtCHX23基因以单拷贝的形式成功插入到玉米基因组中,且AtCHX23基因在转基因玉米中过量表达。非盐胁迫条件下,野生型和2个转基因株系间生长状态及其可溶性糖、脯氨酸和丙二醛含量无显著差异;在150 mmol/L盐处理下,2个转基因株系的生长状态优于野生型,2个转基因玉米株系的可溶性糖和脯氨酸含量均高于野生型,丙二醛的含量低于野生型。综上所述:AtCHX23基因过量表达可以提高玉米苗期的耐盐性。  相似文献   

3.
转BADH基因花生幼苗抗盐性研究   总被引:3,自引:2,他引:1  
宗自卫  常陆林 《安徽农业科学》2009,37(15):6867-6868
[目的]为提高花生幼苗的抗盐性和BADH基因在花生耐盐基因工程中的应用提供试验依据。[方法]以根癌农杆菌LBA4404为转化受体菌,pCGⅡ(Km^1)为表达载体,将BADH cDNA导入花生,并通过测定盐胁迫下花生幼苗的根冠鲜重、细胞膜相对电导率和叶绿素含量研究转化植株的耐盐性。[结果]PCR检测结果表明转化植株有1301 bp目的带,阴性对照植株无目的带。对阳性植株进行Noiahem杂交,结果表明BADH基因已整合到转化植株的基因组中,并可以正常表达。盐胁迫下,检测组植株的根冠鲜重比对照组植株显著增加;检测组植株的相对电导率与对照组植株差异显著,转基因植株的相对电导率均低于对照植株;对照组植株的叶绿素含量比检测组植株低且差异显著。[结论]转BADH基因花生比对照植株表现出更强的耐盐性。  相似文献   

4.
NaCl胁迫对转甜菜碱醛脱氢酶基因美丽胡枝子生理的影响   总被引:1,自引:0,他引:1  
[目的]为探讨外源基因的导入对植物渗透调节的影响。[方法]以同时培育的美丽胡枝子盆栽苗为材料,测定在不同浓度(0、0.5%、1.0%、2.0%)NaCl溶液处理下转甜菜碱醛脱氢酶基因(BADH)植株及非转基因植株的部分生理指标。[结果]在未进行NaCl溶液处理时,转BADH的美丽胡枝子与非转基因植株的脯氨酸、甜菜碱、可溶性糖、丙二醛含量及SOD活性均不存在明显差异。随着盐浓度的增大,转BADH植株在积累甜菜碱、脯氨酸、可溶性糖能力方面明显强于非转基因植株,且转基因的不同株系之间也存在一定差异;各类植株的SOD活性随盐胁迫强度的增大均有所增强,但转基因植株与非转基因植株之间差异不显著,此外,转BADH的美丽胡枝子与非转基因植株相比,可明显抑制丙二醛在体内的快速积累。[结论]外源基因BADH的导入可提高美丽胡枝子植株在盐胁迫下的渗透调节能力,且不同转基因株系表现不同。  相似文献   

5.
【目的】分析转拟南芥△1-吡咯啉-5-羧酸合成酶(P5CS1)基因羽衣甘蓝的耐盐性,为获得较强的耐盐性羽衣甘蓝品种及其抗逆育种提供理论依据。【方法】将拟南芥P5CS1基因(AtP5CS1)经农杆菌介导转入羽衣甘蓝植物中,在盐胁迫下,分别检测转基因植株与野生型植株的AtP5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干质量和鲜质量、叶片相对水含量、叶片电导率和整株存活率。【结果】在150 mmol/L NaCl胁迫下,转基因植株的P5CS1基因mRNA可正常表达,与对照相比,转基因株系Y1、Y2的主根和最长侧根长度较长,侧根数目较多,整株干质量和鲜质量较重;而且相对水含量显著高于对照植株(P0.05,下同),脯氨酸含量及存活率均极显著高于对照植株(P0.01),叶片相对电导率显著低于对照植株。【结论】转AtP5CS1基因植株的耐盐表型优于对照,即AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐盐性。  相似文献   

6.
转mtlD基因和BADH基因早稻苗期耐盐性研究   总被引:2,自引:0,他引:2  
对同时含有mtlD和BADH基因的早稻,只含mtlD基因或只含BADH基因的早稻,非转基因早稻三者在盐胁迫下的表型,生长速率,相对电导率以及K+/Na+含量的比较,发现它们的耐盐性的关系是:同时含有mtlD和BADH基因早稻〉只含mtlD基因或只含BADH早稻〉非转基周早稻,从而推断出mtlD基因和BADH基因在早稻的耐盐性方面具有协同(或累加)效应。通过试验比较,还发现只含有mtlD基因和只含有BADH基因的早稻的耐盐性没有明显差别,从而推断出mtlD基因和BADH基因对植物的耐盐性的贡献差异不显著。此外,已经得到的转基因材料也可以继续作为进一步转化的材料,这为我们进行多基因转化改良植物提供了一条新的途径。  相似文献   

7.
对来自吉林农业大学生物技术中心的转基因大豆(BADH)的T5代进行PCR检测和Southern Blot检测,将大豆的T5代植株用含有氯化钠的营养液浇灌,观察植株形态并用荧光定量PCR检测盐胁迫条件下植株BADH基因的表达量。结果表明,转基因植株后代在同样干旱胁迫条件下,基因表达水平有显著提高.并运用多重序列比对的方法,对已在Gen Bank和PDB数据库注册的玉米、向日葵、甜菜等植物甜菜脱氢酶(BADH)的氨基酸序列进行比对预测。  相似文献   

8.
以100 mmol浓度NaCl盐胁迫,对转OsEBP-89基因水稻T6代3个株系芽期与幼苗期抗盐性进行了鉴定。结果表明,转OsEBP-89基因株系之间抗盐性存在差异,其中两个转基因株系(3448和3463)发芽势比对照日本晴高,芽期综合相对盐害率显著低于对照日本晴,说明转基因材料在100 mmol NaCl胁迫下其芽受到盐的伤害少于对照材料;但其发芽率、根长、苗高和幼苗期综合相对盐害率与对照日本晴没有显著差异。  相似文献   

9.
以转AtNDPK2基因甘薯植株为试材,根据其生理指标及表型变化来鉴定转基因甘薯的耐盐性。室内鉴定结果表明:在100、150 mmol/L NaCl胁迫下,转基因株系JN1~JN6的根长显著高于对照。田间鉴定结果表明:在50 mmol/L NaCl胁迫下,转基因株系JN1~JN6生长正常,而对照10 d后出现黄叶及枯萎等症状;在100 mmol/L NaCl胁迫下,对照植株和JN2~JN6在处理4 d后出现枯萎,而JN1生长正常。  相似文献   

10.
盐胁迫对转BADH基因水稻R1的影响   总被引:3,自引:1,他引:2  
以转BADH基因水稻R1和常规对照品种为材料,采用3种不同浓度NaCl在苗期和孕穗期进行盐胁迫处理,分析了R1和对照之间的株高、BADH活性、叶片相对电导率和植物大分子渗漏值等指标,并进行PCR分子检测。结果表明,PCR阳性与阴性植株个数分离比不完全符合简单的孟德尔遗传规律;相对电导率和植物大分子渗漏值低,而BADH活性高的转基因植株耐盐性比对照增强。此结果说明转基因水稻R1耐盐性明显高于对照,目的基因正常表达,此结果对今后培育新的抗性品种奠定了基础。  相似文献   

11.
甜菜碱醛脱氢酶基因转化速生杨107的研究   总被引:1,自引:1,他引:1  
王亮  苏乔  安利佳 《安徽农业科学》2007,35(4):1000-1001
利用农杆菌介导法将甜菜碱醛脱氢酶(BADH)基因导入速生杨107号中,以提高其耐盐性.对650个叶盘进行抗生素筛选获得25株抗性芽,PCR检测表明,BADH基因已整合到其中10株的基因组中.耐盐筛选结果表明,转基因植株在NaCl浓度为50、100mmol/L的生根培养基上生长情况均好于未转化植株;相对电导率测定结果表明,在同等盐胁迫下转基因植株细胞膜较未转化植株能更好的保持其完整性.  相似文献   

12.
为了探讨盐胁迫下外源基因对植物渗透调节的影响,以同时培育的转入果聚糖蔗糖转移酶(SacB)基因、转甜菜碱醛脱氢酶(BADH)基因及未转基因的美丽胡枝子盆栽苗为材料,研究不同浓度(0、0.5%、1.0%、2.0%)NaCl处理对3种试验材料的耐盐性及盐胁迫下的脯氨酸、甜菜碱、可溶性糖、丙二醛含量、过氧化物歧化酶活性的影响。结果表明:在未进行盐胁迫时,3种试材的这几项指标含量没有明显差异,但随着盐胁迫强度的增加,两种转基因的美丽胡枝子在积累脯氨酸、可溶性糖能力方面明显强于非转基因植株,转入BADH基因的美丽胡枝子在积累甜菜碱上要强于非转基因植株及转入SacB基因的植株;尽管在盐胁迫强度增大的情况下,3种植株的过氧化物歧化酶活性增强了,但两种转基因植株的过氧化物歧化酶活性并没有明显大于非转基因植株;两种转基因植株可明显抑制丙二醛在植物体内的快速积累。   相似文献   

13.
[目的]为开展植物耐盐基因工程提供候选基因.[方法]研究以新疆耐盐植物藜为材料,利用同源克隆技术从藜中克隆到BADH基因,并通过RT-PCR方法对其在不同盐胁迫下的表达进行了初步分析,随后将该基因构建至高效植物表达载体pCN2300上.[结果](1)经测序分析并与藜科其他植物进行同源性比对显示,得到的序列为藜的BADH基因,开放阅读框长度为1 503 bp,编码500个氨基酸;(2)以BADH基因核心序列设计引物对此基因在盐胁迫下的表达进行了RT-RCR分析,发现其本底表达量较高,以100 mmol/L NaCl处理2、5、12和24 h后其表达量没有明显增加趋势,而以50 mmol/L- NaCl或KCl长期胁迫后其表达量则比对照和100 mmol/L时的表达量高;(3)经双酶切鉴定,已成功将CaBADH基因构建到植物表达载体pCN2300,得到重组质粒pCN2300-CaBADH.[结论]研究为进一步从生理和分子水平阐明藜的耐盐机制提供了一定参考.并为通过转基因技术获得耐盐作物新品种打下基础.  相似文献   

14.
Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na+/H+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate (79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na+ and K+ than wild-type (WT) plants particularly in the leaves, resulting in a higher ratio of K+/Na+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.  相似文献   

15.
导入外源甜菜碱醛脱氢酶基因BADH对小麦盐旱抗性的影响   总被引:1,自引:0,他引:1  
测定并比较了转BADH基因小麦品系99T6及其受体石4185,在盐、旱逆境下植株体内的脯氨酸含量、MDA含量、叶绿素含量、质膜透性及根活力,探讨了外源BADH基因导入对小麦抗性的改良作用。  相似文献   

16.
利用农杆菌介导法将耐旱耐盐转录因子基因Pe DREB2a和Kc ERF导入受体材料陆地棉R15中,获得12个株系的转基因植株,通过硫酸卡那霉素初筛以及PCR分子检测最终获得7个转Kc ERF-Pe DREB2a基因的棉花株系。通过测定转基因棉花的抗逆相关生理指标以及对基因相对表达量测定分析,结果表明,200mmol/L的Na Cl和15%的PEG-6000胁迫处理后,转基因棉花幼苗的CAT、SOD活性,游离脯氨酸含量均高于对照组,MDA含量较对照组棉花明显下降。实时定量RT-PCR结果表明,干旱胁迫下,转基因棉花幼苗叶片中Pe DREB2a基因的表达量高于Kc ERF基因的表达量;高盐胁迫下,转基因棉花叶片中的Pe DREB2a,Kc ERF基因的相对表达量持平。本研究结果表明,在干旱、高盐胁迫下,Kc ERF-Pe DREB2a基因有助于提高棉花的耐旱耐盐能力。  相似文献   

17.
转BADH基因和mtlD基因花生幼苗抗盐性研究   总被引:1,自引:0,他引:1  
宗自卫  杨旭 《安徽农业科学》2011,39(22):13288-13289
[目的]研究转mtlD基因和BADH基因花生幼苗的抗盐性。[方法]通过根癌农杆菌介导将外源mtlD和BADH基因同时导入花生,并检测植株的鲜重、高度、电导率等指标以判断转基因花生的抗盐性。[结果]PCR和Northern杂交都显示,mtlD和BADH基因已成功整合到花生染色体上;转基因植株的鲜重、高度、细胞膜的完整程度都明显高于对照植株。[结论]mtlD基因和BADH基因在花生中的表达增强了转基因花生的抗盐性。  相似文献   

18.
【目的】质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)广泛存在于植物细胞的膜系统上,在植物体内水分运输和水分平衡的过程中至关重要。对ZmPIP2;6在植物水分胁迫耐性中的功能进行探究,为玉米培育抗旱耐盐新品种提供优秀基因资源。【方法】分析并比对ZmPIP2;6与其他物种中报道参与水分胁迫的PIPs的氨基酸序列,构建ZmPIP2;6-GFP载体并通过PEG介导转化玉米原生质体,对ZmPIP2;6进行亚细胞定位。采集玉米的不同组织样品,包括根、茎、叶、未成熟雄穗、未成熟雌穗、胚和胚乳;对玉米进行PEG或NaCl处理,在处理的不同时间点采集玉米的根和叶样品。提取总RNA并通过qRT-PCR调查ZmPIP2;6在玉米不同组织以及在水分胁迫下的表达模式。构建ZmPIP2;6超表达载体,发展并鉴定ZmPIP2;6超表达拟南芥材料,观察转基因植株对渗透、盐及干旱胁迫的耐性生理表型,并测量其根长、叶片水分散失率等性状。检测在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达。【结果】氨基酸序列分析比对结果显示ZmPIP2;6具有PIP蛋白的典型结构与并且其他物种的PIP蛋白具有很高的同源性。转化玉米原生质体试验结果显示ZmPIP2;6蛋白定位在细胞质膜。qRT-PCR结果显示ZmPIP2;6在玉米未成熟雄穗中表达量最高,并且在玉米受到渗透和盐胁迫后根和叶中的ZmPIP2;6表达受到显著诱导。在MS固体培养基上进行渗透胁迫处理和盐胁迫处理以及进一步的土培试验中进行干旱胁迫处理,ZmPIP2;6超表达拟南芥植株相对野生型都显示出更强的胁迫耐性。在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达受到不同程度的影响。【结论】玉米内在质膜蛋白基因ZmPIP2;6在渗透或盐胁迫下表达上调,在拟南芥中超表达ZmPIP2;6会增强植株对渗透、盐和干旱胁迫的耐性,并且在盐或干旱胁迫条件下会影响拟南芥中胁迫相关基因的表达。ZmPIP2;6可能参与植物水分胁迫响应过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号