首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Increased potassium (K) fertilization of saline soils has been implicated in alleviating salt stress in plants. We examined whether varying K concentrations in Murashige & Skoog (MS: 1962) basal medium could affect salt (NaCl) stress in micropropagated potatoes. Plantlets of cvs Sierra and Russet Burbank were evaluated after 1 month of growth in a medium containing 0. 40, or 80 mM NaCl and 6,20, or 30 mMK. The medium K was adjusted using KNO3 while total nitrogen was kept constant using NH4NO3. Growth parameters were less affected in Sierra than Russet Burbank, and roots were less affected than shoots, as the medium salinity increased. Tissue Na levels were greater when the medium K was 6 mM compared with 20 mM MS control. The medium K concentration 50% greater than MS control did not promote growth and did not limit tissue Na levels. While this should be confirmed by field assessment, our results suggest that while K deficiency promotes salt damage, its addition beyond the usual fertilizer recommendations is not beneficial in alleviating salinity stress.  相似文献   

2.
Summary Boron (B) requirements differ widely among plant species and the concentration range between toxicity and deficiency is less for B than for any other nutrient. Excess B can adversely affect calcium (Ca) uptake and plant growth. Potato cvs Bintje and Norland plantlets were micropropagated on Murashige & Skoog (MS) nutrient medium, supplemented with 3 (MS control level) or 9 mM Ca, and a range of H3BO3 levels (0.025 to 0.300 mM B). Medium B levels of 0.100 and 0.300 mM decreased Ca content in leaves and shoots of cv. Norland, but not Bintje. Medium B level of 0.025 mM, which is 25% of the control MS level, enhanced Ca uptake in cv. Norland and did not compromise normal plantlet growth in either cultivar. This lower H3BO3 level (0.025 mM B), and a B-free gelling agent such as Gelrite, could be used for micropropagation of potato and possibly other species susceptible to Ca defifiency disorders.  相似文献   

3.
A study was carried out with potato (Solanum tuberosum; cv. Atlantic) during 2001 and 2002 to determine the effect of soil salinity on internal tuber browning. The effect of varying levels of soil salinity on proline content, polyphenol oxidase enzyme activity, and chlorogenic acid content in potato leaves and tubers was examined. NaCl treatments (2.1, 4.25, 6.38, 8.5 g NaCl L?1) were applied to the pots, the first 46 days after planting, and four additional treatments were applied, each about 7 days apart. Increasing NaCl concentrations resulted in an increase in browning of tuber tissue and proline content in the tubers. Chlorogenic acid content in the leaves increased up to 6.4 g NaCl L?1, but then decreased at 8.5 g NaCl L?1 and in tubers tended to be maximal at the highest saline concentration tested (8.5 g NaCl L?1). Increasing NaCl concentration resulted in a reduction in yield per plant and average tuber weight, and also increased tuber number. There were major differences in the impact of salinity over the 2-year period, which was probably due to the impact of the growing media; a low organic matter (about 1% OM) silty loam soil and a high organic content (about 90% OM) Muck soil were used in 2001 and 2002, respectively. Tuber browning increased linearly with salinity in 2002, but only markedly increased at 8.5 g NaCl L?1 in 2001. Sodium and chloride ion concentration was always greater (about two times) at equivalent application rates in the 2002 trial. The high organic matter content soil retained sodium and chloride ions more effectively than the silty loam soil and enhanced the impact of increased salinity concentration on physiological properties of potato plants and particularly on tuber tissue browning and proline accumulation.  相似文献   

4.
Phosphite-based fungicides are increasingly used to control fungi-like plant pathogens from the Oomycetes group. A rapid, precise, and cost-effective suppressed conductivity high performance ion chromatography (HPIC) method was developed to assess the concentrations of soluble phosphites (Phi) and phosphates (Pi) in plant samples. This technique was used to determine the amount of Phi and Pi in leaves and tubers of potato plants following foliar applications of the Phi-based fungicide Confine™. High amounts of Phi were determined in both leaves and tubers indicating that potato plants efficiently uptake and translocate the fungicide. The number of applications of Confine™ and its concentration were found to be directly proportional with the amount of Phi detected in potato plants and inversely proportional with the development of Phytophthora infestans (Mont.) de Bary in these plants. Levels of Phi comparable to those determined in plants were found to strongly inhibit the growth of P. infestans in vitro. The simultaneous estimation of the in planta Phi concentration and of the sensitivity of P. infestans to Phi represent the most comprehensive approach of assessing the efficacy of Phi-based fungicides in controlling late blight development in potatoes.  相似文献   

5.
《Plant Production Science》2013,16(1):104-107
Abstract

We analyzed the yield characters of field-grown transgenic potato plants (Solanum tuberosum) carrying a maize gene for sucrose-phosphate synthase (SPS), the key enzyme in sucrose synthesis. The SPS activity in the leaves of transgenic plants (line Ag1203) was 2 times that of the control (cv. May Queen). There was no difference in the photosynthetic CO2 uptake rates between Ag1203 and May Queen plants, and the leaf starch content of Ag1203 was lower. These observations indicate that the introduction of a foreign SPS gene improved the supply of photosynthate from source (leaves) to sink (tubers). Additionally, leaf senescence of the transgenic potato plants was delayed relative to that of May Queen. The average tuber weight and total yield of Ag1203 plants were at least 20% higher, and the tuber sucrose content, which is related to eating quality, was also higher. Increased translocation of photosynthate and longer period of photosynthetic activity in the leaves may have increased the yield of Ag1203. These results suggest that introduction of the SPS gene improved the yield characters and quality of potato tubers under field conditions.  相似文献   

6.
雨养与灌溉条件下施氮对小麦花后氮素累积与转运的影响   总被引:2,自引:0,他引:2  
为给冀东平原冬小麦雨养和灌溉栽培中合理施氮提供依据,以小麦品种京冬8号和宝麦38为材料,在雨养、灌溉条件下各设置4个施氮水平(0、120、240、360kg·hm-2),研究了两种水分条件下施氮量对小麦植株氮素吸收、累积和转运的影响。结果表明,施氮可显著增加小麦的籽粒产量和蛋白质含量,但过多施氮会导致产量下降。增施氮肥明显提高了小麦花后各器官的氮素累积量及叶、茎、鞘的花前贮存氮素转运量,同时增加了成熟期叶、茎、鞘的氮素残留量。营养器官的氮素累积量及花前贮存氮素的转运量在水分条件间和品种间也存在明显的差异。综合分析,在雨养条件下,京冬8号和宝麦38最适施氮量分别为240和120kg·hm-2,灌溉条件下均为120kg·hm-2。  相似文献   

7.
为给华北地区冬小麦节水栽培条件下氮肥合理运筹提供理论依据,以高产小麦品种周麦18为供试材料,在大田限水灌溉条件下,设置六个不同氮肥处理[各处理底施和追施氮量(底氮+追氮)分别为:0+0、120+0、120+60、120+120、120+180、120+240 kg·hm-2],研究了限水灌溉条件下追氮水平对冬小麦旗叶光合特性及物质运转的影响。结果表明,施氮量120+60 kg·hm-2时,小麦产量最高,达到8 749 kg·hm-2。限水灌溉条件下追氮水平对冬小麦旗叶光合特性及物质运转有较明显的调控效应,总体表现为,在0~120 kg·hm-2范围内,随着追氮量的增加,旗叶净光合速率、气孔导度和叶绿素含量增大,胞间CO2浓度降低,延缓了旗叶的衰老进程,延长了光合功能期,有利于光合产物的积累,而过高的追氮量(180~240 kg·hm-2)并没有在更大程度上提高旗叶净光合速率和叶绿素含量以及降低胞间CO2浓度;适当追氮(60 kg·hm-2)虽然增加了花前贮藏物质和氮素的运转量,但运转率下降;过多的追施氮肥(120~240 kg·hm-2)会导致花前贮藏物质和氮素运转量、运转率及对籽粒的贡献率显著降低。在本试验条件下,最适的施氮处理为120+60 kg·hm-2。  相似文献   

8.
《Crop Protection》1987,6(3):163-170
The uptake and translocation of daminozide and the triethanolamine salt of 2,4-D(2,4-D-TEOA) were determined radiochemically 24 h after application to leaves of Vicia faba (field bean). Chemicals were applied in aqueous solutions as monosize spray drops of varying diameters (50–500 μm), the volume median diameter (VMD):number median diameter (NMD) ratio of the droplet spectra being < 1 · 03. Daminozide was applied at concentrations of 0·17–2·4 g/l in volumes of 10–90 l/ha, providing doses of 5–215 g/ha. 2,4-D-TEOA was applied at 0·20–5·0 g acid equivalent (a.e.) per litre in 20–190 l/ha to provide doses of 4–420 g a.e. per hectare. Uptake of daminozide was 9·3 ± 2·6% (mean ± standard deviation), of which 26 ± 4·4% was translocated out of the treated leaflet, with 25 ± 6·5% of the translocated 14C being redistributed in an acropetal direction. Equivalent values for 2,4-D-TEOA were: 16 ± 5·5% uptake, 70 ± 8·0% translocation and 12 ± 4·9% acropetal redistribution. The quantity of both chemicals taken up increased with increasing dose (r2 > 0·92). Multiple regression analyses demonstrated that the efficiency of uptake (%) of both chemicals was not related to drop size or number, leaf coverage, concentration of active ingredient (a.i.) or application volume. For both chemicals, percentage uptake was inversely related to applied dose, and uptake and translocation were interrelated.  相似文献   

9.
Abstract

We measured the concentration of polyols (pinitol, ononitol, and myo-inositol), which are known to have health-promoting and/or disease-preventing functions, in the common ice plant (Mesembryanthemum crystallinum L.) cultured under salt- and drought-stressed treatments. In NaCl-treated plant the concentration of pinitol/ononitol increased with increasing NaCl concentration in culture solution. The maximal concentration was 3.6 mg g-1 FW, which was foundin the shoot top, followed by small side shoots (2.1 mg g-1 FW) of mature plants grown with 400 mM NaCl for 35 ds. The drought stress also accelerated the accumulation of pinitol/ ononitol. The maximal concentration was 1.2 mg g-1 FW, which was found in the shoot top of plants under the stress for 25 ds. The myo-inositol increased in salt-stressed plants at 3 ds after the start of the treatment and then decreased with the lapse of time during stress. The concentration of polyols in the ice plant was comparable to that in the other species reported to accumulate polyols at high levels. Radical scavenging activity evaluated by DPPH assay was increased two-fold by 400 mM NaCl treatment, which was twice as high as that in the leaves of lettuce (Lactuca sativa L.). These results indicated the high potential of the ice plant as a polyol-rich high-functional food.  相似文献   

10.
研究不同供磷水平对NaCl胁迫下玉米幼苗有机渗透调节物质和离子含量的影响。结果表明,盐胁迫下低磷处理玉米幼苗叶片中可溶性糖和游离氨基酸增加,根系中显著降低;增加供磷水平,叶片中可溶性糖和游离氨基酸含量下降,根系中含量上升,同时叶片和根系中可溶性蛋白含量增加。磷可降低盐胁迫下玉米幼苗各器官中的Na~+含量,同时增加各器官的K~+、Ca~(2+)和Mg~(2+)含量,降低Na~+/K~+与Na~+/Ca~(2+)比值。磷有助于维持植株的碳氮代谢平衡,促进有机渗透调节物质的运输与分配,改善各器官的离子平衡,增强植株的渗透调节能力,从而缓解盐胁迫带来的伤害。  相似文献   

11.
To reduce the time period for in vitro regeneration in annatto (Bixa orellana L.), a highly efficient two-stage plant regeneration protocol had been developed that can be used commercially. Different types of explants: nodal shoot tips, shoot tips and single nodes from in vitro grown seedlings were inoculated onto the Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Highest number of shoot buds was obtained when nodal shoot tip explants were inoculated onto MS medium supplemented with 31.1 μM N6-benzyladenine (BA) and 14.7 μM phenylacetic acid (PAA). PAA in combination with BA exhibited a synergistic effect on shoot multiplication and elongation. Sub-culturing of the shoots onto the MS medium supplemented with BA (13.3 μM) and PAA (7.3 μM) produced elongated shoots. Elongated shoots when inoculated onto the MS medium supplemented with 4.9 μM indole-3-butyric acid (IBA) produced optimal rooting. The rooted plantlets were hardened and their field survival rate after 6 weeks time was 73%.  相似文献   

12.
Summary Liquid scintillation counting (LSC) was used to screen six potato cultivars (Alpha, Bintje, Green Mountain, Kennebec, Russet Burbank, and Shepody) and two wild species(S. microdontum andS. kurtzianum) for ability to take up the tracer45Ca2+ from treatment solutions containing high (15 mM) or low (5 mM) Ca2+ levels. In vitro potato micropropagation, microtuberization, and tissue calcium content, determined by flame atomic absorption spectrophotometry (FAAS), were compared for the six cultivars when Murashige-Skoog basal medium Ca2+ level was increased from 3, to 5 or 15 mM. All aspects of growth were improved when medium Ca2+ level was 15 mM. Microtuber induction occurred earlier, leading to improved yield (19–31%), and microtuber tissue Ca2+ concentration was greater (38–226%). Cv. Bintje was the most efficient genotype at accumulating Ca2+ from treatment solutions or growth media containing high or low Ca2+ levels. It could be identified as a calcium-packer using either LSC or FAAS screening.  相似文献   

13.
One hundred and thirty European and North American potato cultivars were assayedin vitro for salinity (NaCl) tolerance. A modified single-node cutting bioassay was used in which cultivars were exposed to a range of NaCl levels (0, 40, 80, and 120 mM), in a Murashige and Skoog-based medium, for 1 month. Evaluations were performed twice for each cultivar at each salt level, using five single-node cuttings. Six vegetative growth parameters (shoot and root lengths, fresh and dry weights) were measured at the time of harvest and corrected for differences in cultivar vigor. These relative values were subjected to multivariate cluster analysis. The sum of the relative rankings at 40, 80, and 120 mM NaCl partitioned the cultivars into 8 units. The cultivars Amisk, BelRus, Bintje, Onaway, Sierra, and Tobique were in the most salinity tolerant unit and in the top cluster group for vigor with the exception of Tobique. These cultivars can be recommended for further study.  相似文献   

14.
茉莉酸甲酯对杂交水稻同化物运输的调节   总被引:2,自引:0,他引:2  
 在杂交水稻拔节期及灌浆初期施用不同旅度(10~30mg/kg )JA—Me溶液,结果表明 JA—Me能促进杂交水稻对 P和 N的吸收;加速剑叶中同化物向穗部运输;同时提高剑叶的光合速率以及提高谷粒产量等。  相似文献   

15.
The efficacy of mannitol versus sorbitol for in vitro conservation of potato microplants at low (7 ± 1 °C) temperature was studied. Two concentrations of sucrose (20 and 40 g l−1) in combination with two concentrations (20 and 40 g l−1) of either mannitol or sorbitol in Murashige and Skoog (MS) medium were tested. Microplant survival, microplant condition, and root growth in three potato genotypes belonging to different maturity groups were studied up to 18 months of in vitro storage without sub-culturing. Best results were achieved with MS medium having 20 g l−1 sucrose plus 40 g l−1 sorbitol. After 18 months without sub-culturing, maximum survival (58.0%) coupled with a microplant condition good enough to provide suitable nodes for sub-culturing was observed with the use of this medium. The results showed that the in vitro storage period could be prolonged by reducing the root growth. The success of conservation was unaffected by the maturity group of the genotypes.  相似文献   

16.
施氮对稻茬冬小麦氮肥吸收利用及转运的影响   总被引:1,自引:0,他引:1  
为推动稻茬冬小麦氮肥高效利用,采取15N微区试验,研究了施氮量(N0、N120、N210、N300)对稻茬小麦氮素吸收、转运、产量和氮肥利用的影响。结果表明,增加施氮量能够显著提高成熟期植株对肥料氮和土壤氮的吸收量。小麦对基肥氮的吸收以越冬至拔节期最高,对追肥氮的吸收以拔节至开花期最高。植株对追肥氮的积累量均高于基肥氮,对土壤氮的积累量在N120 处理下高于肥料氮,在N210、N300 处理下则相反;N120、N210、N300 处理下植株中土壤氮积累量占总吸氮量的比例分别为57%、48%、45%。成熟期叶片、茎鞘、穗轴+颖壳和籽粒中的氮素分配比例分别为6.09%~9.70%、9.01%~11.14%、7.19%~7.48%、71.96%~ 77.42%。肥料氮对籽粒氮素的贡献率随施氮量增加而显著增加,N120、N210、N300 处理分别为45.78%、 56.22%、61.25%。植株中肥料氮的转运量、花后积累量和土壤氮的花后积累量均随施氮量增加而显著增加,而土壤氮的转运量则随施氮量的增加而下降。基肥氮、追肥氮、肥料氮和土壤氮的转运效率分别为 77.31%~79.96%、77.89%~81.80%、77.61%~81.13%、51.55%~67.64%。植株花后氮积累量对籽粒氮素的贡献率约为1/5,肥料氮和土壤氮花后积累量对籽粒中肥料氮和土壤氮的贡献率分别为9.59%~ 14.56% 和 24.11%~34.48%。施氮量超过210 kg·hm-2 时产量增加不显著,N120、N210、N300 处理氮肥回收率分别为54.48%、48.15%、41.64%。  相似文献   

17.
《Plant Production Science》2013,16(3):319-326
Abstract

We investigated the mechanisms of increased sensitivity to Na+ in the apical and basal regions of the rice leaf under salinity. Three-week-old plants were treated with 200 mM NaCl in hydroponic culture for 3 d. Segments 6 cm in length were obtained from the apical and basal regions of the fully expanded uppermost leaves (6th leaf blades) as old and young tissues, respectively. In the plants exposed to 200 mM NaCl, Nitro blue tetrazolium (NBT) reducing activity, and H2O2 and Malondialdehyde (MDA) contents significantly increased, accompanied by the swelling of thylakoids and destruction of thylakoid membranes in the apical regions. However, no indication of oxidative damages was observed in the basal region, even though the Na+ content in the basal region was comparable to that in the apical region. In the apical region, the capacity to scavenge H2O2 was lower than that in the basal region due to decrease in the constitutive levels of ascorbate peroxidase and guaiacol peroxidase. In addition, the activities of antioxidant enzymes except superoxide dismutase and guaiacol peroxidase decreased drastically after 48 hr of exposure to NaCl. By contrast, the activities of catalase and glutathione reductase in the basal region increased compared with those in the control, and other antioxidant enzymes did not decrease under salinity during the experimental period. These results suggest that the capacity to scavenge reactive oxygen species decreased with age, and thus the apical region of the leaf blade suffered severer damage by Na+ than the basal region.  相似文献   

18.
Summary Shoots, roots and callus were formed from tuber discs of potato, cultivar Désirée, when grown in vitro on the basal medium of Murashige & Skoog (1962) (MS) supplemented with 2,4-D and/or BAP. Callus was formed in MS medium with 1 mg l−1 BAP plus 0.5 mg l−1 2,4-D, callus and roots were formed in MS with 1 mg l−1 BAP plus more than 0.5 mg l−1 2,4-D and shoots were formed directly on tuber discs cultured on MS medium with 1 mg l−1 BAP without the addition of 2,4-D. Nodules produced at the explant surface after the 4th week increased in size following subculture onto the same medium (MS+BAP alone), and 2 to 6 shoots developed from each nodule. After 9 weeks total time in culture, these shoots were excised and transferred as cuttings to MS medium without growth regulators, after which roots developed and plantlets were formed. A histological study of the explants at the sites of nodule formation indicated that the shoots developed from meristematic zones initiated within small outgrowths of tissue similar to those occuring in adventive organogenesis but the presence of shoot and root meristems associated with the same axis suggests the formation of somatic embryos.  相似文献   

19.
Summary Calcium uptake into potato plants was examined using test solutions containing 5% safranin dye (C20H19N4C1 mw 350.85) and the radiotracer45CaCl2. When minitubers were suspended in test solutions for up to 5 days, safranin moved into the outer pith tissues while45Ca2+ was located throughout the pith. Ca2+ is apparently taken up directly from the tubersphere by a slow diffusion process. Plantlets with one microtuber were used to investigate calcium uptake via basal roots.45Ca2+ was well ahead of the safranin dye front in all plantlet stems.45Ca2+ in shoot tips was significantly greater than in microtubers and no safranin entered the microtubers. Greenhouse-grown ex vitro plantlets with minitubers attached were used to determine the relative uptake by basal and stolon roots. Basal root feeding contributed significantly more45Ca2+ to shoot tips and tubers than stolon root feeding while combined feeding gave the greatest shoot tip and tuber45Ca2+ levels.  相似文献   

20.
Moisture stressing of potato plants resulted in reduced14CO2 fixation and translocation of labelled photosynthates from leaves to tubers. A majority of the label was recovered in the sugar fraction of both leaves and tubers. The amount of labelled14C recovered in the organic acid fraction of tubers of normally irrigated plants was significantly higher than in tubers which had been moisture stressed. In the other fractions, the differences were not significantly different. Injection of uniformly labelled sucrose into the basal portion of attached tubers of stressed and non-stressed plants showed greater translocation of labelled carbon by tubers of stressed plants from basal to the apical portion and also into the stems as compared to non-stressed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号