首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wheat (Triticum aestivum L.) recombinant inbred line (RIL) population was used to identify quantitative trait loci (QTL) associated with yield, yield components, and canopy temperature depression (CTD) under field conditions. The RIL population, consisting of 118 lines derived from a cross between the stress tolerant cultivar ‘Halberd’ and heat stress sensitive cultivar ‘Karl92’, was grown under optimal and late sown conditions to impose heat stress. Yield and yield components including biomass, spikes m?2, thousand kernel weight, kernel weight and kernel number per spike, as well as single kernel characteristics were determined. In addition, CTD was measured during both moderate (32–33 °C) and extreme heat stress (36–37 °C) during grain-filling. Yield traits showed moderate to high heritability across environments with a large percentage of the variance explained by genetic effects. Composite interval mapping detected 25 stable QTL for the 15 traits measured, with the amount of phenotypic variation explained by individual QTL ranging from 3.5 to 27.1 %. Two QTL for both yield and CTD were co-localized on chromosomes 3BL and 5DL and were independent of phenological QTL. At both loci, the allele from Halberd was associated with both higher yield and a cooler crop canopy. The QTL on 3BL was also pleiotropic for biomass, spikes m?2, and heat susceptibility index. This region as well as other QTL identified in this study may serve as potential targets for fine mapping and marker assisted selection for improving yield potential and stress adaptation of wheat.  相似文献   

2.
Summary Near-isogenic tall (no dwarfing gene), semidwarf (Rht1 or Rht2) and dwarf (Rht1 + Rht2 or Rht3) spring wheat lines were evaluated for yield and yield components under irrigated and rainfed conditions. Under irrigated conditions, the dwarf and the semidwarf lines exhibited a significant yield advantage over the tall lines. Under rainfed conditions, the semidwarf lines outyielded the tall as well as the dwarf lines. Percent yield reduction in response to drought stress was highest with the dwarfs and lowest with the tall lines. Dry matter production of the tall lines and that of the semidwarf lines did not differ significantly and both produced significantly more dry matter than the dwarf lines under irrigated as well as rainfed conditions. Plant height and kernel weight decreased with increasing degree of dwarfness while number of kernels per spikelet, harvest index and days to heading increased under both moisture regimes. The dwarfing genes did not have any significant influence on number of tillers/m2 and spikelets per spike in either moisture regime.  相似文献   

3.
In a 2-years experiment, 30 wheat cultivars and 21 landraces from different countries were tested under near optimum and drought stress conditions. Plant height, number of sterile spikelets per spike, spikelets per spike, number of kernels per spike, kernel weight per spike, 1000 kernel weight and grain yield were evaluated. The number of kernels per spike, 1000 kernel weight and especially yield were more sensitive to drought stress in the cultivars than plant height and number of spikelets per spike, while in the landraces these traits did not differ under drought stress compared to near optimum conditions. The average yield of cultivars was significantly better than the average yield of landraces under near optimum as well as drought stress conditions. Path coefficient analysis showed that for cultivars under near optimum conditions there was no significant direct association of any of the analysed characters with yield, while under drought stress conditions, number of kernels per spike had a significant positive direct effect. Under drought stress conditions, the number of sterile spikelets displayed a negative direct effect, while kernel weight per spike had a positive direct effect on yield. Hierarchical cluster analysis was used as a tool to classify cultivars and landraces according to their yield ability under near optimum and drought stress conditions. Among the cultivars, two groups out of five and among one of three in the landraces were characterised by high yields in both near optimum as well as under drought stress conditions. These genotypes may serve as sources of germplasm for breeding for drought tolerance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Three populations of winter wheat were formed by crossing Avrora to Sage, TAM W-101, and Danne. Approximately 10% of the F2 plants from these crosses were selected for high and low levels of number of tillers per plant, number of kernels per spike, 1000-kernel weight, and grain yield. Forty-eight solid seeded F3 lines obtained from the selected F2 plants were then selected for high and low expressions of yield components and grain yield. Realized heritabilities were estimated. Indirect responses of yield to yield component selection and direct response to selection for grain yield were measured. Heritabilities were low for tiller number, number of kernels per spike and kernel weights but were high or intermediate for grain yield when selection occurred in the F2 generation. When selection was practiced in the F3 generation, heritabilities for tiller number and yield were low, but were intermediate to high for number of kernels per spike and kernel weight and high heritabilities were found for kernel weight. Selection for kernel weight often increased grain yield; however, direct selection for grain yields was usually as effective.Journal article no. J-4488 of the Oklahoma Agri. Exp. Stn., Stillwater, Oklahoma 74074.  相似文献   

5.
Summary Twenty-nine primary triticales (x Triticosecale Wittmack), derived from homozygous, uniform wheat and rye inbreds, were evaluated (i) to assess wheat, rye and interaction effects for yield-related characters, (ii) to estimate correlations between these characters, and (iii) to investigate the possibility of predicting micro-plot performance from early spaced-plant tests. The triticales (12 octoploid, 17 hexaploid) were tested under space-planting and in micro-plots in three-replicate, randomized block designs in 1983 and 1984, respectively. In general, hexaploid triticales performed significantly better than octoploids. Strong wheat and wheat x rye interaction effects were found, making it difficult to predict the performance of primary triticales from their constituent parental genotypes. At both ploidy levels under space-planting kernel weight per spike showed significant positive correlations with spikelets per spike, kernels per spikelet, and 1000-kernel weight. No significant associations were detected between spaced-plant and micro-plot performance for octoploids, indicating severe disorders at this ploidy level. In hexaploid triticales spikes per plant, kernel weight per spike, and kernels per spikelet observed in spaced-plants appeared to be useful indicators of grain yield in micro-plots.  相似文献   

6.
Winter rye (Secale cereale L.) will be especially affected by drought induced yield losses in Central and Eastern Europe in the future because it is predominantly cultivated on low-fertile soils with a poor water-holding capacity. In order to examine the performance of winter rye under different drought conditions, field experiments were carried out during the years 2011, 2012, and 2013 near Braunschweig, Germany. Two sets of genotypes were tested under severe, mild, pre-anthesis, and post-anthesis drought stress in rain-out shelters as well as under rainfed and well-watered conditions. The grain, straw, and total above ground biomass yields, harvest index, grain yield components, leaf area index (LAI), and phenological characteristics were examined, as well as phenotypic correlations between grain yield and further characteristics. Drought induced grain yield reduction ranged from 14 to 57%, while straw yield and harvest index were lesser affected by drought than the grain yield. Under drought conditions, fully ripe was reached up to twelve days earlier than under non water-limited conditions. Pre-anthesis drought mainly reduced spikes m−2 and kernels spike−1 while drought during grain filling reduced the 1000-kernel weight (TKW) only. The grain yield was positively associated with straw yield, spikes m−2, and kernels spike−1 under water limited conditions while the TWK was only positively associated with grain yield under drought during grain filling. Consequently, high pre-anthesis biomass as well as high numbers of spikes m−2 and kernels spike−1 are especially important for obtaining high grain yields under water-limited conditions. Focusing on these traits is, therefore, recommendable for developing drought tolerant rye genotypes.  相似文献   

7.
Growth and yield of wheat are affected by environmental conditions and can be regulated by sowing time and seeding rate. In this study, three sowing times [winter sowing (first week of September), freezing sowing (last week of October) and spring sowing (last week of April)] at seven seeding rates (325, 375, 425, 475, 525, 575 and 625 seeds m?2) were investigated during the 2002–03 and 2003–04 seasons, in Erzurum (Turkey) dryland conditions, using Kirik facultative wheat. A split‐plot design was used, with sowing times as main plots and seeding rates randomized as subplots. There was a significant year × sowing time interaction for grain yield and kernels per spike. Winter‐sown wheat produced a significantly higher leaf area index, leaf area duration, spikes per square metre, kernel weight and grain yield than freezing‐ and spring‐sown wheat. The optimum time of sowing was winter for the facultative cv. Kirik. Grain yields at freezing and spring sowing were low, which was largely the result of hastened crop development and high temperatures during and after anthesis. Increasing seeding rate up to 525 seeds m?2 increased the spikes per square metre at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as sowing time in maximizing grain yield. Changes in spikes per square metre were the major contributors to the grain‐yield differences observed among sowing times and seeding rates. Yield increases from higher seeding rates were greater at freezing and spring sowing. We recommended that a seeding rate of 525 seeds m?2 be chosen for winter sowing, and 575 seeds m?2 for freezing and spring sowing.  相似文献   

8.
Heat tolerance for yield and its components in different wheat cultivars   总被引:1,自引:0,他引:1  
L. Shpiler  A. Blum 《Euphytica》1990,51(3):257-263
Summary Twenty one diverse, standard and experimental cultivars of common spring wheat (Triticum aestivum L.) were tested for the effect of heat stress on phenology, yield and its components by growing the materials for 2 years under full irrigation during the hot summer (offseason), and the cool winter (normal) conditions. Heat tolerance was estimated for each variable by the heat susceptibility index (S) which scales the reduction in cultivar performance from cool to hot conditions relative to the respective mean reduction over all cultivars.Genotypes differed significantly in S for yield and its components. The ranking of cultivars in S over the 2 years was consistent for yield, kernels per spike and kernel weight, but not for spike number. Of the three yield components, the greatest genotypic variation in S was expressed for kernels per spike. However, S for yield could not be simply attributed to S in a unique component across all cultivars. On the other hand, a general linear model regression of summer yield on its components revealed that the most important yield component affecting yield variation among cultivars under heat stress was kernel number per spike. Kernel number per spike was positively associated across cultivars with longer duration and greater stabilty of thermal time requirement from emergence to double ridge. It is therefore concluded that kernel number per spike under heat stress is a reasonable estimate of heat tolerance in yield of wheat and that this tolerance is operative already during the first 2 to 3 weeks of growth.  相似文献   

9.
30余年来北部冬麦区小麦品种产量改良遗传进展   总被引:15,自引:0,他引:15  
采用1965年以来北部冬麦区育成的10个主栽品种,在水、肥供应充足、病、虫、倒伏得到有效控制条件下,连续两年共进行4个点次试验;同时对1B/1R易位系和矮秆基因进行分子鉴定。结果表明,品种产量年遗传进展为64.63 kg hm-2 或1.20%,其较大幅度的提高出现在1980年丰抗号品种育成时期。丰抗2号和丰抗8号是该地区最早育成的含有1B/1R染色体和Rht-D1b矮秆基因的品种。主要农艺性状演变的总趋势是抽穗期提前、株高显著降低、生物学产量基本保持稳定、单位面积穗数减少、每穗粒数有所增加、千粒重和收获指数大幅度提高,其年遗传进展分别为-0.1%、-0.70%、0.35%、-0.50%、0.63%、1.12%和0.79%。通过减少不孕小穗和小花数来增加每穗粒数,通过提高灌浆速率来提高千粒重,再把高穗粒重与较多的单位面积穗数结合在一起,是北部冬麦区进一步提高产量的重要途径。  相似文献   

10.
He Zhong-hu  S. Rajaram 《Euphytica》1993,70(3):197-203
Summary Agronomic and yield data were collected from two trials each containing 16 bread wheat genotypes, planted two years under late sowing conditions of high temperature (above 30° C) and one year under a normal sowing time environment. The aim was to study the character response and yield correlations with yield components and other characters under high temperature conditions with full irrigation. The results show that yield, seeds per spike, biomass, and plant height are more thermo-sensitive than spike number per square meter, 1000 kernel weight, and test weight. The grain-filling rate was more temperature-sensitive than days to anthesis and duration of grain-filling. Simple phenotypic correlation analysis indicated that yield was highly and positively correlated with seeds per spike, biomass, and harvest index (HI), independent of seasons and genotypes under high temperatures. The seeds per spike accounted for variation of yield ranging from 35.2 to 78.1%. Effect of earliness on the yield under high temperature was highly dependent on the temperature regime during the heading stage. Grains per spike, biomass, HI, and test weight could be considered potential selection criteria for yield under high temperature. Analysis of yields under normal and late sowing conditions failed to reveal any association between the yield potential in normal sowing date and the performance of varieties under high temperature.  相似文献   

11.
A. Collaku 《Plant Breeding》1994,112(1):40-46
Wheat breeding programmes in Albania depend upon the use of diverse genetic material of local origin and on special environmental conditions; the present study being conducted under drought stress conditions. Grain yield, yield components, plant height and test weight were estimated in an F5 generation of a winter wheat population at Kamez in 1989—90 and 1990—91 and at Lushnje in 1989—90. The highest values of heritability were observed for plant height, kernel weight and spike length. Due to drought stress the heritability of kernels per spike was low. None of the correlated responses was higher than the direct response for yield. Maximum genetic gain was expected when yield, plant height, spike length, kernels/spike and kernel weight were included in the index.  相似文献   

12.
Selection for biomass yield in wheat   总被引:2,自引:0,他引:2  
R. C. Sharma 《Euphytica》1993,70(1-2):35-42
Summary Biomass (above ground plant parts) yield may be a useful selection trait for yield improvement in wheat (Triticum aestivum L.). This study was conducted to estimate realized heritability of biomass yield and to determine the response to selection for high and low biomass yield in 8 genetically diverse populations of spring wheat under two production systems. Selections were made among the F3 lines. Progenies of the selected lines were evaluated in replicated field tests in the F4 generation under high fertility and low fertility production systems at Rampur, Nepal, in 1991. Fertility level had a significant effect on biomass yield, grain yield, effective tiller number, number of kernels per spike, thousand kernel weight, and harvest index. Selection in the F3 for high and low biomass yield was effective in identifying F4 lines with high and low biomass yield, respectively. Biomass yield differences between high and low selection groups in the F4 generation, expressed as percent of the mean of the low selection group and averaged over the eight populations, were 53.9 and 36.5% higher than the mean of the low selection group under the high and the low fertility production systems, respectively. The corresponding figures for grain yield were 48.8 and 34.9% under the high and the low production systems, respectively. Also, selection for high biomass yield resulted in higher effective tiller number, and number of kernels per spike, but lower harvest index. Realized heritability estimates for biomass yield were greater at high fertility (range 0.49 to 0.85) than at low fertility (range 0.22 to 0.44). Biomass yield showed positive genotypic correlations with grain yield, effective tiller number, and number of kernels per spike but a negative correlation with harvest index. The results indicated that selection for high biomass yield should bring about positive improvements in biomass yield, grain yield, effective tiller number, and number of kernels per spike. The correlation between F3 and F4 generations suggested that biomass yield in the F3 generation was a good predictor of biomass yield and grain yield in the F4 generation. Selection for biomass yield in wheat should be made under the standard production system to obtain a realistic response.  相似文献   

13.
为给‘济麦22’大面积推广提供适宜栽培措施,选择4个生态区5个试验点,通过大田试验研究了播期和种植密度对该品种产量及其构成因素的影响。结果表明,播期对单位面积穗数、千粒重及产量产生显著的影响,但对穗粒数影响不大;种植密度对产量及构其成因素均有显著影响。在一定范围内,‘济麦22’单位面积穗数随着播期的推迟而减少,随密度的增加而增加;穗粒数随播期的推迟而增加,随密度的增加而减少;千粒重随播期的推迟先增加后下降,随密度的增加而降低。产量构成因素稳定性分析发现环境差异对‘济麦22’千粒重影响较大,而对单位面积穗数和穗粒数影响较小。2008年4个生态区‘济麦22’适宜播期范围分别为:鲁南地区10月8日至14日、鲁东地区10月6日至12日、鲁北地区10月1日至7日、鲁西地区10月10日至16日;适宜种植密度范围为180×104/hm2~240×104/hm2。研究还表明,在中高肥或高肥地力条件下,增加粒重对充分发挥‘济麦22’高产潜力似乎更有效。因此,选择适宜播期播量的同时,应在栽培技术中注意采取相应的措施,获得足够的单位面积穗数的基础上,稳步提高粒重。  相似文献   

14.
The components of grain yield are altered by adverse growing conditions as the effects of certain environmental factors on crop growth and yield differ depending upon the developmental stages when these conditions occur. Path-coefficient analysis was used to investigate the main processes influencing grain yield and its formation under Mediterranean conditions. Twenty-five durum wheat genotypes, consisting of four Spanish commercial varieties and 21 inbred lines from the ICARDA durum wheat breeding program, were grown during 1997 and 1998 under both rainfed and irrigated conditions in southern Spain. {P}ath-coefficient analysis revealed that under favourable conditions grain yield depended in equal proportion on the three primary yield components (i.e. spikes m−2, grains spike−1, and mean grain weight), whereas in the rainfed experiments, variations in grain yield were due mainly to spikes m−2 and to a lesser extent to grains spike−1. Compensatory effects were almost absent under irrigated treatments; however, under water shortage, spikes m−2 exerted a negative influence on grain spike−1 due mainly to a negative interrelationship between tiller production and apical development. These compensatory effects could partially explain the restricted success in durum wheat breeding observed in water-limited environments of the Mediterranean region. Under rainfed conditions the number of spikes m−2 depended mainly on the ability for tiller production, whereas in the irrigated experiments the final number of spikes was determined mostly by tiller survival.  相似文献   

15.
Summary Diverse landraces of wheat, collected from the semi-arid (150 to 250 mm of total annual rainfall) Northern Negev desert in Israel were considered as a potential genetic resource of drought resistance for wheat breeding. These materials were therefore evaluated for their reponses to drought stress in agronomical and physiological terms. Up to 68 landraces, comprising of Triticum durum, T. aestivum, and T. compactum were tested in two field drought environments, in one favourable field environment, under post-anthesis chemical plant desiccation which revealed the capacity for grain filling from mobilized stem reserves, under a controlled drought stress in a rainout shelter and in the growth chamber under polyethylene glycol (PEG)-induced water stress. Biomass, grain yield and its components, harvest index, plant phenology, canopy temperatures, kernel weight loss by chemical plant desiccation, growth reduction by PEG-induced drought stress and osmotic adjustment were evaluated in the various experiments.Landraces varied significantly for all parameters of drought response as measured in the different experiments, which was in accordance to their documented large morphological diversity. Variation in grain yield among landraces under an increasing drought stress after tillering was largely affected by spike number per unit area. Kernel weight contributed very little to yield variation among landraces under stress, probably because these tall (average of 131 cm) landraces generally excelled in their capacity to support kernel growth by stem reserve mobilization under stress. Yield under stress was reduced with a longer growth duration of landraces only under early planting but not under late planting. Landraces were generally late flowering but they were still considered well adapted phenologically to their native region where they were always planted late.Landraces differed significantly in canopy temperature under drought stress. Canopy temperature under stress in the rainout shelter was negatively correlated across landraces with grain yield (r=0.67**) and biomass (r=0.64**) under stress. Canopy temperature under stress in the rainout shelter was also positively correlated across landraces (r=0.50**) with canopy temperature in one stress field environment. Osmotic adjustment in PEG-stressed plants was negatively correlated (r=–0.60**) with percent growth reduction by PEG-induced water stress. It was not correlated with yield under stress in any of the experiments. In terms of yield under stress, canopy temperatures and stem reserve utilization for grain filling, the most drought resistant landrace was the Juljuli population of T.durum.  相似文献   

16.
为不同玉米品种寻找出其最适的化控剂,以6 种不同的玉米杂交品种为主因素,以5 种不同的玉米化控剂处理为次因素,采用随机区组设计研究不同化控剂处理对玉米穗部性状与产量的影响。每个小区随机抽取10 穗考种,测其穗部性状,用其籽粒产量折算其群体产量。研究结果表明:在相同品种下,矮壮素较其他化控剂处理对穗部性状的影响显著,高玉金不适合对试验进行化控处理,产量与轴粗、穗粗和行粒数成正比关系;在不同化控剂处理下穗重、穗粒重与穗长与玉米群体产量密切相关,百粒重对品种的产量影响很小,‘协玉5 号’适合通过化控剂处理来提高穗部性状的表现。不同的玉米品种应采用不同的化控剂,没有一种化控剂可以同时满足各种品种。  相似文献   

17.
Summary The effect of the 1AL/1RS chromosome translocation on grain yield and other agronomic characteristics of 85 random F2-derived F6 bulks from three 1AL 1RS × 1A bread wheat crosses was determined under optimum and reduced irrigation conditions at CIANO, Yaqui Valley, Sonora, Mexico, during the 1991–1992 and 1992–1993 crop production cycles. Harvest plots of 5.0 m2 were arranged in an alpha lattice design with three replications. The 1AL/1RS translocation increased grain yield, above-ground biomass, spikes/m2, and test weight under both irrigated and dryland conditions. Homozygous chromosome 1A lines, on the other hand, possessed longer spikes with more grains. The 1AL/1RS cultivars had an advantage in 1000-grain weight, which was detected only under optimum irrigation. The translocation lines showed later maturity and longer grainfilling period than the 1A genotypes under one irrigation treatment. A significant relationship between grain yield and test weight was detected only among the 1AL/1RS genotypes, indicating that they possess heavier and plumper grains than the 1A genotypes. These results encourage the continued use of the 1AL/1RS translocation in wheat improvement.  相似文献   

18.
Twelve field experiments comparing 24 durum wheat varieties from three periods—old (<1945), intermediate (1950–1985) and modern (1988–2000)—were carried out in order to ascertain the advances made in durum wheat yield components and related traits in Italian and Spanish germplasm. Grain yield improvements were based on linear increases in the number of grains per m2 and harvest index, while grain weight and biomass remained unchanged. Yield per plant increased at a rate of 0.36 and 0.44% y−1 and the number of grains per m2 improved by 39% and 55% in Italian and Spanish varieties, respectively. The mean rate of increase in the number of grains per m2 was 0.55% y−1. Plants per m2, spikes per plant and grains per spike contributed 20%, 29% and 51%, respectively, to the increase in the number of grains per m2. The enhance of the number of grains per m2 was due to the greater grain set in the modern varieties, since the number of spikelets per spike remained unchanged. Harvest index increased overall by 0.48% y−1 (0.40 and 0.53% y−1 in Italian and Spanish varieties, respectively). Plant height was the trait that suffered the most dramatic changes (it decreased at a rate of −0.81% y−1, with little difference between the varieties of the two countries), as consequence of the presence of the Rht-B1 dwarfing gene. Harvest index and plant height, which were the traits that most contributed to discriminating between periods, remained unchanged from 1980 to 2000. The higher rates of improvement in Spain are discussed in the context of the contrasting strategies followed to improve durum wheat yield in the two countries.  相似文献   

19.
G. Oettler  T. Schmid 《Plant Breeding》2000,119(6):487-490
Septoria nodorum leaf and glume blotch is an important disease of triticale (×_Triticosecale Wittm.) and can cause severe losses of grain yield in some regions. Quantitative genetic parameters for resistance were estimated for 2 years in two locations in triticale genotypes artificially inoculated with S. nodorum. The effect of infection was assessed by a visual symptom rating of flag leaves and spikes and by grain yield traits relative to an uninoculated control. The mean ratings of flag leaves and spikes, calculated from two to four ratings, were 2.6 and 3.9, respectively, with a range of six ratings for spikes and over five for flag leaves. Infection caused an 11.5% mean reduction in kernel weight per spike, which was the result of 13.2% lower 1000‐kernel weight. The number of kernels per spike and 50‐ml weight were little affected. For all relative grain yield traits, genotypic variation was small with high genotype‐environment interaction effects and thus moderate to low heritabilities. In contrast, for visual ratings genotypic variation was high, with low interaction effects leading to high heritabilities. Phenotypic correlation between flag leaf and spike ratings was low, indicating independent disease resistance mechanisms. The best association, although still moderate, was obtained between flag leaf rating and relative 1000‐kernel weight. Therefore, visual disease ratings do not satisfactorily assess the effect of Septoria infection on grain yield traits. The reduction in 1000‐kernel and possibly 50‐ml weight are good indicators, provided that multi‐environment tests are conducted.  相似文献   

20.
The effect of major dwarfing genes on yield potential in spring wheats   总被引:1,自引:0,他引:1  
Summary A composite convergent cross of 16 spring wheat parents produced a set of unselected progeny lines among which the major dwarfing genes, Rht1, Rht2 and Rht3, were distributed against a common random genetic background. Random subsets of these lines were grown under irrigation and optimal conditions in 4 experiments with replicated bordered plots in southern New South Wales in order to measure the dwarfing gene effect on yield potential. The dwarfing gene composition of each line was determined by test crossing and seedling responsiveness to gibberellic acid.Lodging was negligible in the two experiments in 1982. While present in the two in 1983, it was not strongly associated with yield. Grain yield levels were appropriately high (mean 5.9 t/ha). In all but 1 experiment the Rht1+Rht2 dwarf genotypes gave highest yields while the Rht3 group yielded on average 3% lower, Rht2 9% lower, Rht1 11% lower, and the non-dwarf or tall group yielded 24% lower. These yield differences were positively associated with harvest index, kernels per m2 and kernels per spike, but negatively associated with mature plant height. Even within major dwarfing gene classes, grain yield was significantly and negatively associated with height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号