首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
养殖水体中的氮循环   总被引:1,自引:0,他引:1  
氮是有机物的主要成分,鱼类的粪便及残饵中都含有大量的氮。据研究,饲料中的氮有60%~70%排泄到水体中。氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。  相似文献   

2.
养殖水体中氨氮的存在、危害及控制   总被引:3,自引:0,他引:3  
1 氨氮在水中的存在及危害 氮元素在水中的存在形式主要有硝酸氮(NO3-)、亚硝酸氮(NO2-)、氨氮(包括分子态NH3和离子态NH4 )和氮气.水生植物直接吸收水中的氨氮和硝酸氮,水生动物通过摄食获得氮,生物死亡后,有机物被分解,氮又回到水中.  相似文献   

3.
养殖水体氨氮积累危害与生物利用   总被引:17,自引:0,他引:17  
在养殖水体中,有机污染物包括氮、碳、磷、硫四种主要物质,而后三者形成的产物在氧气充足的条件下对鱼类的影响程度不是太大,当氮以分子氨态或亚硝酸盐氮态存在时,却会对水生动物产生很强的神经性毒害.当前以强饲为特征的集约养殖方式加大了水体有机氮物质分解转化的负荷,微生物分解环节严重受阻,从而成为水体系统循环过程的制约瓶颈,造成水体富营养化甚至污染,引发出诸多病害、药残、食品隐患等问题.水体系统的氨氮循环及污染治理已成为世界性关注的环境问题和研究热点.  相似文献   

4.
浅谈氨氮对养殖水体的影响   总被引:3,自引:0,他引:3  
<正> 天然水中的氨氮主要来自于含氮有机物在微生物作用下的分解即氨化作用。NH_4~+在天然水中发生水解反应:NH_4~++H_2O NH_3+H_3O~+,由于分子态NH_3不带电荷,有较强的脂溶性,易透过细胞膜,对水生生物有较强的毒性。氨的毒性表现在对水生生物生长的抑制,它能降低鱼虾、鳖等养殖生物的产卵能力,损害鳃组织以至引起死亡。 水中氨氮来源,除了人工施肥外,主要是蛋白质分解的最终产物。氨氮在水中以NH_3分子和  相似文献   

5.
氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4 、NH2-和NO3-形式存在的氮才能被植物所利用。水体中其它形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。一、水体氮的来源鱼池中施入大量畜禽  相似文献   

6.
养殖水体氨氮的危害及改良   总被引:10,自引:0,他引:10  
董乔仕 《齐鲁渔业》2002,19(9):10-10
夏秋季节水温高,大量动植物尸体、鱼类粪便和残渣余饵沉积水底分解,产生氨氮、H。S等有毒物质,使水质恶化,影响水产动物的生长,降低其对不良环境及疾病的抵抗能力,成为诱发病害的原因之一。  相似文献   

7.
如何控制养殖水体氨氮含量   总被引:2,自引:0,他引:2  
氮元素在水体中的存在形式主要有硝酸氮(NO3-)、亚硝酸氮(NO2-)、总氨氮(包括分子态NH3和离子态NH4+)和氮气(N2)。这儿种形式可以相互转化,在亚硝酸菌和硝酸菌的作用下,氨氮被转化为亚硝酸盐和硝酸盐,这个过程被称为硝化反应;反之,在反硝化菌作用下,亚硝  相似文献   

8.
以混合无机氮源(亚硝态氮+硝态氮+氨氮)配制培养基,在25℃条件下培养6株微藻(3株硅藻、3株绿藻),通过分析各藻株的细胞密度、氨氮质量浓度、亚硝态氮质量浓度的变化情况,研究微藻在混合无机氮源下对氨氮和亚硝态氮的净化规律。试验结果显示,所有藻在整个试验期均生长良好,经历了一个相对完整的生长周期。在生长周期的初期(培养至第2~3 d),所有藻均能净化95%以上的氨氮,但各株藻对氨氮的相对净化速率并不相同,以塔胞藻KDN21的最高[0.999 mg/(L·d)],三角褐指藻KDN13的最低[0.663 mg/(L·d)];大部分微藻对亚硝态氮的净化能力很弱,相对净化率均小于35%,相对净化速率均未超过0.035 mg/(L·d),双眉藻KDN17能较快地净化亚硝态氮,其相对净化率和相对净化速率分别达到65%和0.322 mg/(L·d)。在生长周期的中后期,微藻对亚硝态氮的净化能力仍然很弱,大部分藻株的相对净化速率均低于0.010 mg/(L·d)。研究结果表明,当水体中的氮源仅有氨氮、亚硝态氮和硝态氮时,且总氮能满足藻细胞充分生长的条件下,绝大部分微藻都优先净化氨氮,而对亚硝态氮的净化能...  相似文献   

9.
养殖水体中高效氨氮降解菌的分离与鉴定   总被引:13,自引:0,他引:13  
以(NH4)2SO4为惟一氮源的选择性培养基,从养鱼池水中分离筛选到1株高效氨氮降解菌X2。当NH4 -N初始质量浓度为50 mg/L时,该菌株在24 h内的氨氮降解率>95%,并具有硝酸还原和亚硝酸还原能力。初步鉴定该菌株为巨大芽孢杆菌(Bacillus megaterium)。  相似文献   

10.
沸石去除养殖水体中氨氮的作用研究   总被引:1,自引:0,他引:1  
沸石除氨氮是一种深度处理技术,适合于养殖水体.本文重点介绍了沸石的结构、性能和除氨氮的作用机理以及在养殖水体中除氨氮的应用,并对今后沸石除氨氮的改进作了展望.  相似文献   

11.
王小龙  宋青  王志勇  韩芳 《水产学报》2019,43(4):820-832
锰超氧化物歧化酶(MnSOD)是一种含金属辅基的抗氧化酶,广泛存在于各种需氧生物中,能将氧自由基快速歧化为分子氧(O_2)和过氧化氢(H_2O_2)。本研究首次获得了黄姑鱼MnSOD基因的cDNA序列,其全长958 bp,包括47 bp的5′端非编码区(untranslated region,UTR)、233 bp的3′UTR和678 bp的开放阅读框(open reading frame,ORF),编码225个氨基酸残基(aa)。氨基酸序列分析显示,MnSOD含有一条信号肽序列(1~27 aa),4个Mn结合位点(His 53、101、190和Asp 186)和一条保守的锰/铁SOD特征序列(186~193 aa)。系统进化树分析显示,黄姑鱼MnSOD在进化上与大黄鱼最近,并与其他鱼类(斜带石斑鱼、暗纹东方鲀、牙鲆、斑马鱼和日本鳗鲡)聚为一支。荧光定量PCR检测显示,MnSOD基因在所检测的11个黄姑鱼组织/器官中均有表达,其中心脏中表达量最高,其次为脑、肝脏、鳃、中肾、肠、胃、头肾、肌肉和鳔,在脾脏中表达量最低。氨氮和亚硝态氮对黄姑鱼的急性毒性实验显示,黄姑鱼对氨氮胁迫更为敏感,其氨氮和亚硝态氮的96 h半致死浓度(LC50)分别为20.23 mg/L (换算成非离子氨0.57 mg/L)和99.08 mg/L,安全浓度分别为2.02 mg/L (换算成非离子氨0.06 mg/L)和9.91 mg/L。此外,黄姑鱼经氨氮和亚硝态氮急性攻毒后,其肝脏、鳃和头肾中MnSOD基因的表达水平均不同程度上调,推测MnSOD的上调是为了及时清除由氨氮和亚硝态氮刺激产生的氧自由基,或可用作水体污染检测的早期生物标志物。  相似文献   

12.
13.
李奕雯 《海洋与渔业》2010,(10):40-40,52
水体中氮元素的存在形式主要有硝酸氮(NO3)亚硝酸氮(NO2)、总氨氮(包括分子态NH3和离子态NH4)和氮气(N2)。一般认为,硝酸氮、氮气对水生生物是无毒的。在养殖水体中,亚硝酸氮对养殖动物有较大的毒性,通常是衡量水质好坏的重要指标,也是养殖者重点关注的对象。  相似文献   

14.
研究了膜式氧合器3种不同解吸方式,即:O2对流法、真空抽取法和酸吸收法去除水产养殖水体中氨氮的影响因素,并比较对其氨氮的去除效果。结果表明,氨氮初始浓度和pH是氨氮去除率的主要影响因素;当pH>9时,O2对流法和真空抽取法对氨氮去除效果比pH<9时要高,而酸吸收法不论pH高低时比其它2种方法都能获得较高的氨氮去除率。  相似文献   

15.
草鱼养殖水体中参与氮转化途径的异养菌分析   总被引:1,自引:0,他引:1  
为分析草鱼池塘中参与氮代谢的异养细菌比例及其代谢途径,从杭州郊区取得4个草鱼池塘的水样,每个水样通过涂布随即挑选100株菌株进行定性显色试验,并据此选取11株异养菌进行16S rRNA序列分析。结果表明,4个草鱼养殖池塘中NH4+-N和NO2--N的平均水平分别为5.597 mg/L和0.135 mg/L。池塘中可培养的异养菌平均为3.26×105cfu/mL,其中的89.75%参与了氮的不同代谢途径,其中31.25%的氨化菌和33.50%NO3--N(NO2--N)还原菌参与了NH4+-N的生成,32.45%的氨氧化菌参与了NH4+-N的降低;NO2--N生成途径主要包括蛋白质直接转化(11.26%)、氨氧化(4.25%)和硝酸盐氮还原(10.75%),而NO2--N降低主要通过15.50%的亚硝酸氧化菌、8.75%的NO2--N还原菌和10.75%的反硝化菌实现。结果提示,草鱼养殖水体中存在大量的异养硝化菌参与不同的氮代谢途径,且产生氨氮的异养菌比例远高于去除氨氮的菌,这是草鱼养殖水体中氨氮含量易偏高的原因。同时,11株不同功能的异养菌16SrRNA鉴定结果为寡养食单胞菌(Stenotrophomonas)6株、假单胞菌(Pseudomonas)3株、克雷伯氏菌(Klebsiella)和肠杆菌(Enterobacter)各1株,而且细菌对氮源的利用具有菌株特异性。  相似文献   

16.
随着淡水养殖集约化规模的扩大,水体氨氮的控制成为水质控制的关键。本文由水体的氮循环过程阐述了养殖水体氨氮积累的成因及危害,简单介绍了利用生物控制水体氨氮方法,并提出了菌藻联合调控新技术。一、水体的氮素循环构成氮循环的主要环节是:生物体内有机氮的合成、  相似文献   

17.
养殖水体生物脱氮技术研究进展   总被引:4,自引:0,他引:4  
近年来,水产养殖业在全球范围内迅速发展,我国水产养殖产量已达到世界养殖产量的50%以上。同时,随着人们生活水平的提高,尤其是我国加入WTO以后,人们对水产品的品质提出了更高的要求,循环水养殖系统因其高度集约化和水质相对容易控制等优势在国内外得到了广泛应用,它是实现高效、绿色和清洁水产品生产的重要途径。在循环水养殖系统中,鱼类所食饵料的70%~80%通过鳃的扩散、离子交换以代谢产物或残饵的形式排入水中。  相似文献   

18.
张忙友 《水产养殖》2012,33(10):55-55
氨氮和亚硝酸盐是养殖水体最常见隐形杀手.随着养殖密度的不断增大,经常伴随在养殖的全过程,给养殖动物造成诸多不良后果.1 产生过程氨氮和亚硝酸盐是由养殖动物的排泄物、水体施肥、动植物尸体、淤泥中的有机质等厌氧分解转化而来.亚硝酸盐是氨氮在亚硝化细菌和反硝化细菌的参与下转化而成,一旦水体溶氧不足,硝化细菌及反硝化细菌数量不足等,正常的硝化作用受阻,亚硝酸盐的生产机制就会加强,并在水体内大量积累,形成潜在危害.可以说,水体中的含氮物质是生产亚硝酸盐的原料,而亚硝化细菌和反硝化细菌则是加工厂,水体缺氧或微缺氧是产生的环境条件.  相似文献   

19.
养殖水体中“富氮”的危害及防治方法   总被引:1,自引:0,他引:1  
李贵雄 《内陆水产》2006,31(6):20-21
氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4^+、NH2^-和NO3^-形式存在的氮才能被植物所利用.其他形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号