首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Astrocytes potentiate transmitter release at single hippocampal synapses   总被引:1,自引:0,他引:1  
Perea G  Araque A 《Science (New York, N.Y.)》2007,317(5841):1083-1086
Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca(2+) elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without affecting the amplitude of synaptic events. This form of short-term plasticity was due to the release of glutamate from astrocytes, a process that depended on Ca(2+) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein and that activated metabotropic glutamate receptors (mGluRs). The transient potentiation of transmitter release became persistent when the astrocytic signal was temporally coincident with postsynaptic depolarization. This persistent plasticity was mGluR-mediated but N-methyl-d-aspartate receptor-independent. These results indicate that astrocytes are actively involved in the transfer and storage of synaptic information.  相似文献   

2.
3.
Oligodendrogliomas are the second most common malignant brain tumor in adults and exhibit characteristic losses of chromosomes 1p and 19q. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven tumors. Among other changes, we found that the CIC gene (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six cases and that the FUBP1 gene [encoding far-upstream element (FUSE) binding protein] on chromosome 1p was somatically mutated in two tumors. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins. These results suggest a critical role for these genes in the biology and pathology of oligodendrocytes.  相似文献   

4.
mahoganoid is a mouse coat-color mutation whose pigmentary phenotype and genetic interactions resemble those of Attractin (Atrn). Atrn mutations also cause spongiform neurodegeneration. Here, we show that a null mutation for mahoganoid causes a similar age-dependent neuropathology that includes many features of prion diseases but without accumulation of protease-resistant prion protein. The gene mutated in mahoganoid encodes a RING-containing protein with E3 ubiquitin ligase activity in vitro. Similarities in phenotype, expression, and genetic interactions suggest that mahoganoid and Atrn genes are part of a conserved pathway for regulated protein turnover whose function is essential for neuronal viability.  相似文献   

5.
心与胆相通即脑心与胆相通理论,属于脏腑别通之一,是癫痫病脑与胆同治、共治和互治的理论基础。癫痫乃内外合邪为病,病机关键是神机受累、元神失控,多虚实夹杂之证。本文例举重症肺炎并癫痫持续状态、脑外伤后遗症并继发性癫痫、继发性癫痫并早期认识障碍、原发性癫痫等4个医案,说明基于脑心与胆相通理论指导癫痫病辨治,确立癫痫病的治则为疏达元神、枢转神机、和法论治。坚持病证结合,分清标本缓急,以元气亏虚、脑神失养为本,相火与逆气、内风、痰热、瘀血、浊毒等结合为标;癫痫发作期气火、风痰为主;癫痫缓解期痰瘀、浊毒、正虚为主;癫痫持续状态气逆无制、风火煽动、痰浊上涌、脑窍壅闭。从胆治脑,主方用升降温胆汤加减,和解少阳,斡旋气机,枢转神机。  相似文献   

6.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

7.
Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.  相似文献   

8.
Cellular mechanisms of epilepsy: a status report   总被引:33,自引:0,他引:33  
The cellular phenomena underlying focal epilepsy are currently understood in the context of contemporary concepts of cellular and synaptic function. Interictal discharges appear to be due to a combination of synaptic events and intrinsic currents, the exact proportion of which in any given neuron may vary according to the anatomic and functional substrate involved in the epileptic discharge and the epileptogenic agent used in a given model. The transition to seizure appears to be due to simultaneous increments in excitatory influences and decrements in inhibitory processes--both related to frequency-dependent neuronal events. A variety of specific hypotheses have been proposed to account for the increased excitability that occurs during epileptiform activity. Although each of the proposed mechanisms is likely to contribute significantly to the epileptic process, no single hypothesis provides an exclusive unifying framework within which all kinds of focal epilepsy can be understood. The spread of epileptic activity throughout the brain, the development of primary generalized epilepsy, the existence of "gating" mechanisms in specific anatomic locations, and the extrapolation of hypotheses derived from simple models of focal epilepsy to explain more complex forms of human epilepsy, all are not yet fully understood.  相似文献   

9.
Growth cones are specialized structures that form the distal tips of growing axons. During both normal development of the nervous system and regeneration of injured nerves, growth cones are essential for elongation and guidance of growing axons. Developmental and regenerative axon growth is frequently accompanied by elevated synthesis of a protein designated GAP-43. GAP-43 has now been found to be a major component of growth-cone membranes in developing rat brains. Relative to total protein, GAP-43 is approximately 12 times as abundant in growth-cone membranes as in synaptic membranes from adult brains. Immunohistochemical localization of GAP-43 in frozen sections of developing brain indicates that the protein is specifically associated with neuropil areas containing growth cones and immature synaptic terminals. The results support the proposal that GAP-43 plays a role in axon growth.  相似文献   

10.
Autism spectrum disorders (ASDs) are characterized by impairments in social behaviors that are sometimes coupled to specialized cognitive abilities. A small percentage of ASD patients carry mutations in genes encoding neuroligins, which are postsynaptic cell-adhesion molecules. We introduced one of these mutations into mice: the Arg451-->Cys451 (R451C) substitution in neuroligin-3. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly, these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. These data suggest that increased inhibitory synaptic transmission may contribute to human ASDs and that the R451C knockin mice may be a useful model for studying autism-related behaviors.  相似文献   

11.
A 20-base pair region in the first intron of the human c-myc gene was identified as the binding site of a nuclear protein. This binding site is mutated in five out of seven Burkitt lymphomas sequenced to date. To investigate the protein-recognition region in greater detail, the abnormal c-myc allele from a Burkitt lymphoma line (PA682) that carries a t(8;22) chromosomal translocation was used. A point mutation in the binding region of the PA682 c-myc DNA abolished binding of this nuclear protein. This protein may be an important factor for control of c-myc expression, and mutations in its recognition sequence may be associated with c-myc activation in many cases of Burkitt lymphoma.  相似文献   

12.
Little is known about the neuronal mechanisms that subserve long-term memory persistence in the brain. The components of the remodeled synaptic machinery, and how they sustain the new synaptic or cellwide configuration over time, are yet to be elucidated. In the rat cortex, long-term associative memories vanished rapidly after local application of an inhibitor of the protein kinase C isoform, protein kinase M zeta (PKMzeta). The effect was observed for at least several weeks after encoding and may be irreversible. In the neocortex, which is assumed to be the repository of multiple types of long-term memory, persistence of memory is thus dependent on ongoing activity of a protein kinase long after that memory is considered to have consolidated into a long-term stable form.  相似文献   

13.
The hippocampus is an area of the brain involved in learning and memory. It contains parallel excitatory pathways referred to as the trisynaptic pathway (which carries information as follows: entorhinal cortex --> dentate gyrus --> CA3 --> CA1 --> entorhinal cortex) and the monosynaptic pathway (entorhinal cortex --> CA1 --> entorhinal cortex). We developed a generally applicable tetanus toxin-based method for transgenic mice that permits inducible and reversible inhibition of synaptic transmission and applied it to the trisynaptic pathway while preserving transmission in the monosynaptic pathway. We found that synaptic output from CA3 in the trisynaptic pathway is dispensable and the short monosynaptic pathway is sufficient for incremental spatial learning. In contrast, the full trisynaptic pathway containing CA3 is required for rapid one-trial contextual learning, for pattern completion-based memory recall, and for spatial tuning of CA1 cells.  相似文献   

14.
The DJ-1 gene encodes a ubiquitous, highly conserved protein. Here, we show that DJ-1 mutations are associated with PARK7, a monogenic form of human parkinsonism. The function of the DJ-1 protein remains unknown, but evidence suggests its involvement in the oxidative stress response. Our findings indicate that loss of DJ-1 function leads to neurodegeneration. Elucidating the physiological role of DJ-1 protein may promote understanding of the mechanisms of brain neuronal maintenance and pathogenesis of Parkinson's disease.  相似文献   

15.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

16.
Long-term potentiation (LTP) of synaptic transmission is a widely studied cellular example of synaptic plasticity. However, the identity, localization, and interplay among the biochemical signals underlying LTP remain unclear. Intracellular microelectrodes have been used to record synaptic potentials and deliver protein kinase inhibitors to postsynaptic CA1 pyramidal cells. Induction of LTP is blocked by intracellular delivery of H-7, a general protein kinase inhibitor, or PKC(19-31), a selective protein kinase C (PKC) inhibitor, or CaMKII(273-302), a selective inhibitor of the multifunctional Ca2+-calmodulin-dependent protein kinase (CaMKII). After its establishment, LTP appears unresponsive to postsynaptic H-7, although it remains sensitive to externally applied H-7. Thus both postsynaptic PKC and CaMKII are required for the induction of LTP and a presynaptic protein kinase appears to be necessary for the expression of LTP.  相似文献   

17.
Control of synapse number by glia   总被引:1,自引:0,他引:1  
Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.  相似文献   

18.
Vesicular glutamate transporters (VGLUTs) 1 and 2 show a mutually exclusive distribution in the adult brain that suggests specialization for synapses with different properties of release. Consistent with this distribution, inactivation of the VGLUT1 gene silenced a subset of excitatory neurons in the adult. However, the same cell populations exhibited VGLUT1-independent transmission early in life. Developing hippocampal neurons transiently coexpressed VGLUT2 and VGLUT1 at distinct synaptic sites with different short-term plasticity. The loss of VGLUT1 also reduced the reserve pool of synaptic vesicles. Thus, VGLUT1 plays an unanticipated role in membrane trafficking at the nerve terminal.  相似文献   

19.
Cardio-facio-cutaneous (CFC) syndrome is a sporadic developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, and developmental delay. We demonstrate that heterogeneous de novo missense mutations in three genes within the mitogen-activated protein kinase (MAPK) pathway cause CFC syndrome. The majority of cases (18 out of 23) are caused by mutations in BRAF, a gene frequently mutated in cancer. Of the 11 mutations identified, two result in amino acid substitutions that occur in tumors, but most are unique and suggest previously unknown mechanisms of B-Raf activation. Furthermore, three of five individuals without BRAF mutations had missense mutations in either MEK1 or MEK2, downstream effectors of B-Raf. Our findings highlight the involvement of the MAPK pathway in human development and will provide a molecular diagnosis of CFC syndrome.  相似文献   

20.
A change in the efficiency of synaptic communication between neurons is thought to underlie learning. Consistent with recent studies of such changes, we find that long-lasting potentiation of synaptic transmission between cultured hippocampal neurons is accompanied by an increase in the number of clusters of postsynaptic glutamate receptors containing the subunit GluR1. In addition, potentiation is accompanied by a rapid and long-lasting increase in the number of clusters of the presynaptic protein synaptophysin and the number of sites at which synaptophysin and GluR1 are colocalized. These results suggest that potentiation involves rapid coordinate changes in the distribution of proteins in the presynaptic neuron as well as the postsynaptic neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号