首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
《农业科学学报》2023,22(6):1870-1882
Soil salinization is a critical environmental issue restricting agricultural production. Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress. However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive. Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer. Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively. The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth. Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile. Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield. Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period. The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.  相似文献   

2.
Under the limited cultivated land area and the pursuit of sustainable agricultural development,it is essential for the safety of grain production to study agricultural management approaches on narrowing the winter wheat yield gap and improving nitrogen use efficiency (NUE) in China.In this study,DSSAT-CERES-Wheat Model is used to simulate winter wheat yield under different agricultural treatments,and we analyze yield gaps and NUE with different management scenarios at regional scales and evaluate the suitable approaches for reducing yield gap and increasing NUE.The results show that,the potential of narrowing yield gap ranges 300–900 kg ha~(–1) with soil nutrients increase,400–1 200 kg ha~(–1) with sowing date adjustment and 0–400 kg ha~(–1) with planting density increase as well as 700–2 200 kg ha~(–1) with adding nitrogen fertilizer.Contribution rates of management measures of soil nutrients,sowing date adjusting,planting density,and nitrogen fertilizers are 5–15%,5–15%,0–4%,and 10–20%,respectively.Difference in nitrogen partial productivity ranges 3–10 kg kg~(–1) for soil nutrients,1–10 kg kg~(–1) for sowing date adjusting,1–5 kg kg~(–1) for planting density increase,and–12–0 kg kg~(–1) for adding nitrogen fertilizers,respectively.It indicates that four treatments can narrow yield gap and improve the NUE in varying degrees,but increasing nitrogen fertilizer leads to the decrease of NUE.  相似文献   

3.
长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响   总被引:21,自引:2,他引:21  
【目的】研究长期增施有机肥/秸秆还田对作物产量及土壤氮素淋失风险的影响,旨在为华北平原冬小麦-夏玉米轮作区增强土壤肥力、提高作物产量及降低农业面源污染风险提供依据。【方法】以国家褐潮土肥力与肥料效益监测基地的长期肥料试验为平台,研究长达27年不同施肥处理对冬小麦-夏玉米产量、土壤肥力、氮素淋失风险和土壤氮素剖面分布的影响,试验共设置5个施肥处理,即:对照(CK);氮磷钾(NPK);氮磷钾+有机肥(NPKM);氮磷钾+过量有机肥(NPKM+);氮磷钾+秸秆还田(NPKS)。【结果】(1)在27年的不同施肥处理中,长期增施有机肥/秸秆还田均能使作物增产,改善土壤肥力。其中,增施有机肥处理尤为显著,与NPK相比,NPKM、NPKM+处理提高小麦和玉米产量分别为41%-50%和30%-32%;增加0-20 cm表层土壤有机碳(SOC)和全氮(TN)含量分别为62%-121%、107%-187%;但降低小麦、玉米氮肥偏生产力(PFPN)分别达22%-32%、27%-41%。而NPKS处理对作物增产及提升土壤肥力的作用低于增施有机肥处理,对小麦产量、玉米产量、SOC、TN含量的增幅分别为24%、6%、9%、97%,但提高小麦季PFPN为216%、降低玉米季PFPN为40%。(2)长期增施有机肥/秸秆还田处理中,0-20 cm表层土壤SOC、TN、硝态氮(NO3--N)、可溶性碳氮等养分含量以及氮矿化速率、硝化潜势等微生物学过程显著高于20-200 cm,说明长期增施有机肥/秸秆还田等外源碳的添加对土壤养分及微生物学过程的影响主要发生在表层。(3)与NPK相比,NPKM处理能够显著增加100-200 cm深层土壤中NO3--N含量,NO3--N平均含量为17.8-26.1 mg·kg-1;而NPKS处理在一定程度上能够增加0-100 cm土层NO3--N含量,NO3--N平均含量为3.6-13.4 mg·kg-1,表明增施有机肥会促进土壤NO3--N的向下迁移,而秸秆还田对土壤NO3--N具有一定的固持作用。此外,由于有机肥和秸秆带入的氮素, NPKM、NPKM+、NPKS处理氮盈余比NPK处理增加312%、1 037%、953%,大大增加了土壤氮素淋失风险。【结论】在氮磷钾化肥基础上增施有机肥/秸秆还田会提高作物产量、增强土壤肥力,但会提高土壤氮盈余量,提高氮素淋失风险,尤其是增施有机肥会大大增加氮素淋失风险。  相似文献   

4.
The influence of agricultural management practices, such as organic fertilisation and plant densities on soil properties, root growth, and sesame yield were investigated. Soil samples (depth of 0–20 cm) were taken from a field study with sesame (Sesamum indicum L.) cultivated on a Chromic Luvisol, which was conducted to explore the effects of six fertilisation systems [Non-fertilisation (Control); Mineral fertilisation (Min); Organic fertilisation with 2 (Org-1) and 3 Mg ha–1 (Org-2) of commercial organic fertiliser Organus B; and with 1 (Tak 1) and 2 Mg ha–1 (Tak-2) of commercial organic fertiliser Takamix] and two plant densities [111111 (Pdens1) and 55555 (Pdens2) plants ha–1), in a factorial design (6 × 2) with four blocks. The highest values of soil organic carbon, total nitrogen, root density and sesame yield were found in the Org-2 fertilisation and Pdens1 treatments. We found that organic fertilisation combined with Pdens1 significantly increased root growth. Organic fertilisation treatments were able to maintain 80% of sesame roots distributed at a soil depth of 0–10 cm, whereas the last 20% were distributed at a soil depth of 10.1–20 cm. In conclusion the utilization of commercial organic fertilisers as an organic matter source enhanced soil organic carbon, total nitrogen, and root density that contributed to increase sesame yield. Our findings also suggest that inputs of organic matter source with a correct plant density might change positively soil organic carbon and total nitrogen, root growth, root distribution and sesame yield.  相似文献   

5.
Canola cultivars positively responded to sulphur fertilization in term of seed yield and oil quality. Oscar cultivar increased seed yield 53% as compared to control plots. Sulphur @ 45 kg ha–1 increased seed yield, biological yield, and quality of rapeseed. Number of days to flowering (76), number of pods plant–1 (372), number of seeds pod–1 (24), plant height (173 cm), biological yield (15547 kg ha–1), seed yield (2209 kg ha–1), harvest index (19%), glucosinolate (μmol g–1) content (31.03 μmol g–1) and oil content (45.81%) was enhanced significantly with sulphur treated @ 45 kg ha–1 applied plots as compared to delayed flowering (78 days), shortest plant (151 cm), pods formation (298 pods), seed pod–1 (21), biological yield (11090 kg ha–1), seed yield (1436 kg ha–1), and oil content (42.62%) in control plots. Among cultivars “Oscar” ranked first in different growth stages and attain more plant height (164 cm), and examined substantial number of pods plant–1 (359), seeds pod–1 (24), seed yield (2005 kg ha–1), biological yield (14298 kg ha–1), harvest index 17%, and oil content (46.29%) as compared to other sowed cultivars. On the basis of the result it is recommended that cultivar “Oscar” treated with sulphur @ 45 kg ha–1 should be applied for higher yield and quality of rapeseed under the agro-climatic condition of swat valley.  相似文献   

6.
An improved straw mulching model may be a sustainable agricultural production technology due to its improvements in soil water and the fertilizer environment by the recycling of waste straw resources.A four-year?eld experiment was conducted in a randomized block design on the Loess Plateau of northwestern China in 2015–2019,which aimed to study the effects of straw strip mulching (SSM) and conventional?at planting without mulching (CK) on soil water storage,water consumption characteristics,wate...  相似文献   

7.
In the North China Plain(NCP), soil deterioration threatens winter wheat(Triticum aestivum L.) production. Although rotary tillage or plowing tillage are two methods commonly used in this region, research characterizing the effects of mixed tillage on soil characteristics and wheat yield has been limited. A fixed-site field trial was carried out during 2011–2016 to examine the impacts of three tillage practices(5-year rotary tillage with maize straw removal(RT); 5-year rotary tillage with maize straw return(RS); and annual RS and with a deep plowing interval of 2 years(RS/DS)) on soil characteristics and root distribution in the plough layer. Straw return significantly decreased soil bulk density, increased soil organic carbon(SOC) storage and SOC content, macro-aggregate proportion(R_(0.25)) and its stability in the plough layer. The RS/DS treatment significantly increased the SOC content, total nitrogen(TN), and root length density(RLD) in the 10–40 cm layer, and enhanced the proportion of RLD in the 20–30 and 30–40 cm layers. In the 20–30 and 30–40 cm layers, an increase in SOC and TN could lead to higher grain production than commensurate increases in the surface layer, resulting in a sustainable increase in grain yield from the RS/DS treatment. Thus, the RS/DS treatment could lead to high productivity of winter wheat by improving soil characteristics and root distribution at the deeper plough layer in the NCP.  相似文献   

8.
Effective variable-rate nitrogen (N) management requires an understanding of temporal variability and field-scale spatial interactions (e.g. lateral redistribution of nutrients). Modeling studies, in conjunction with field data, can improve process understanding of agricultural management. CropSyst-Microbasin (CS-MB) is a fully distributed, 3-dimensional hydrologic cropping systems model that simulates small (10 s of hectares) heterogeneous agricultural watersheds with complex terrain. This study used a highly instrumented 10.9 ha watershed in the Inland Pacific Northwest, USA, to: (1) assess the accuracy of CS-MB simulations of field-scale variability in water transport and crop yield in comparison to observed field data, and (2) quantify differences in simulated yield and farm profitability between variable-rate and uniform fertilizer applications in low, average and high precipitation treatments. During water years 2012 and 2013 (a “water year” refers to October 1st through the following September 30th, where a given water year is named for the calendar year on September 30th), the model simulated surface runoff with a Nash–Sutcliffe efficiency (NSE) of 0.7, periodic soil water content (comparison to seasonal soil core measurements) with a root mean square error (RMSE) ≤0.05 m3 m?3, and continuous soil water content (comparison to in situ soil sensors) at 15 of 20 microsites with NSE ≥0.4. The model predicted 2013 field variability in winter wheat yield with RMSE of 1100 kg ha?1. Simulated uniform N management resulted in 0–35 kg ha?1 greater field average yield in comparison to variable-rate management. The savings in fertilizer costs under variable-rate N management resulted in $23–$32 ha?1 greater field average returns to risk. This study demonstrated the capacity of CS-MB to further understanding of simulated and observed field-scale spatial variability and simulated crop response to low, medium and high annual precipitation.  相似文献   

9.
为探究浅水土表覆盖秸秆对土壤盐渍化的缓解效果和对蕹菜生长的影响,在大棚内利用硝态氮含量均在1 200 mg·kg-1以上的重度盐渍化土壤采用塑料栽培箱浅水种植蕹菜,以不覆盖秸秆作对照,设置覆盖切段5 cm的水稻秸秆150 g(7 500 kg·hm-2,R1505)、切段40 cm的小麦秸秆150 g(7 500 kg·hm-2,W15040)、小麦整株秸秆150 g(7 500 kg·hm-2,W150)和切段10 cm小麦秸秆300 g(15 000 kg·hm-2,W30010)共5种处理,测定不同处理下土壤硝态氮、有机碳、全氮、全磷、全钾含量及蕹菜的产量和品质等指标。结果表明,覆盖秸秆处理土壤的硝态氮含量较对照均显著降低,降幅均在50%以上。除W30010处理土壤有机碳含量增加外,其余覆盖秸秆处理土壤的有机碳含量均降低,但降幅小于对照。除W15040处理外,其余处理土壤的速效钾含量均增加。覆盖秸秆处理的蕹菜总产量均高于对照,其中,R1505处理的增产效果最显著。综上所述,浅水土表覆盖秸秆消耗了土壤中富余的硝酸盐,缓解了土壤盐渍化,同时为土壤提供了有机碳,增加了土壤速效钾含量,使蕹菜产量显著提高。  相似文献   

10.
氮肥运筹对旱地胡麻水分利用特征及产量的调控效应   总被引:1,自引:0,他引:1  
为探索西北旱区适宜胡麻高产高效生产的氮肥运筹方式,采用大田试验,研究60kg·hm~(-2)(J1)、120kg·hm~(-2)(J2)和kg·hm~(-2) 180(J3) 3个不同施氮水平,氮全部基施(N1)、氮肥2/3基肥+1/3追肥(现蕾初期)(N2)、氮肥1/2基肥+1/2追肥(现蕾初期)(N3)、氮肥1/3基肥+2/3追肥(现蕾初期)(N4)和氮肥1/3基肥+1/3追肥(分茎期)+1/3追肥(现蕾初期)(N5)5个施肥时期对胡麻水分利用特征及其产量形成的影响。结果表明:施氮120kg·hm~(-2)显著增加胡麻盛花期至青果期0~20 cm土层的土壤含水量,且氮全部基施(N1)、2/3基肥+1/3现蕾期追肥显著提高盛花期至青果期0~40cm土层土壤含水量;J2处理下胡麻籽产量较J3和J1处理显著提高5.38%和8.32%,不同施氮水平下各处理间N2处理产量均达到最大值,J2N2处理较其余处理产量高出1.22%~25.27%;不同施氮水平处理下对胡麻贮水量、耗水量、水分利用效率影响均达极显著水平,J2施氮水平显著增加苗期土壤贮水量,J3施氮水平显著增加现蕾期、成熟期土壤贮水量,在不同施氮水平下随着施氮量增加耗水量呈降低趋势,J1处理耗水量较J2、J3处理显著高3.59%、10.34%,水分利用效率呈增加趋势,J3较J2、J1处理显著高7.47%、18.79%,不同施肥时期处理下J2N2、J2N4处理显著提高胡麻现蕾期土壤贮水量,不同处理间水分利用效率J2N2处理较其余处理显著高出15.09%~32.43%。由此表明,施氮120kg·hm~(-2),氮肥2/3基肥和1/3追肥(现蕾初期)可有效提高胡麻现蕾期浅层土壤含水量及贮水量,且显著提高籽粒产量和水分利用效率,为定西区最佳氮运筹方式。  相似文献   

11.
[目的]研究稻草、玉米秸秆和甘蔗渣覆盖对茶园土壤养分的影响,筛选出适宜的覆盖材料,为茶园的可持续发展提供理论依据.[方法]在成龄茶园中,设覆盖厚度相同(8 cm)的稻草、玉米秸秆、甘蔗渣处理和不覆盖处理作对照(CK),测定不同处理土壤有机质、土壤碱解氮、土壤速效磷、土壤速效钾等含量和土壤含水量、茶鲜叶产量及茶叶理化成分等指标.[结果]覆盖稻草、玉米秸秆和甘蔗渣处理可提高0~60 cm土层土壤有机质、速效磷和速效钾的含量;覆盖稻草和玉米秸秆处理可提高0~40 cm土层土壤碱解氮的含量;覆盖甘蔗渣处理使0~60 cm土层土壤碱解氮含量降低,土壤pH值增高.在夏、秋茶期3个覆盖处理0~60 cm土层的土壤含水量均高于CK;春茶期,3个覆盖处理0~20cm土层的土壤含水量均高于CK,稻草处理的土壤含水量最高.覆盖玉米秸秆和稻草处理的鲜叶产量分别比CK增加13.42%和9.47%,覆盖甘蔗渣的产量较CK降低了5.26%.覆盖3种秸秆处理可使茶叶的茶多酚含量增高,氨基酸含量降低.[结论]稻草和玉米秸秆覆盖可促进茶园土壤养分的供应,提高茶树产量.  相似文献   

12.
A field experiment was conducted on silty clay loam soil in the years 2011–2012. Two sesame (Sesamum indicum L.) cultivars (Local Black and Local White) were evaluated using various 3 different sowing dates (20th June, 10th and 30th July) and four agrotechnical level (0, 40, 80 and 120 kg N ha–1) at New Developmental Farm The University of Agriculture, Peshawar, Pakistan. The objective of this study was to evaluate the effects of sowing dates on growth, yield and oil fatty acid composition of two sesame cultivars grown under different nitrogen fertilization. Results showed that cv. Local Black was characterized by significantly higher content of oil (47%), seed yield (696 kg ha–1) and oil yield (335 kg ha–1) while cv. Local White had higher palmitic acid (8%) and linoleic acid (38.7%). Yield and its main components were positively affected by the earlier sowing date. With regard to fatty acid composition, a decrease in oleic and stearic acid and an increase in linoleic and palmitic acid were observed. At early sowing, oleic and palmitic acid decreased whereas linoleic and stearic acid increased. The decrease in the oleic/linoleic acid ratio observed at early sowing, suggests a possible role of temperature on the activity of oleate desaturase in the developing seeds. Intensive technology of cultivation (120 kg N ha–1), compared to the economical technology (40 kg N ha–1), significantly increased the seed yield of both sesame cultivars. This was due to higher number of branches, Capsules m–2, capsules plant–1, seeds capsule–1 and 1000 seed weight (g). The intensive technology of cultivation had a beneficial effect on the content of palmitic acid, linolenic acid and oleic acid in sesame seed.  相似文献   

13.
通过4年田间定位试验,研究小麦-水稻轮作方式下秸秆还田对土壤有机质组成及不同形态氮含量的影响.试验设置不施秸秆不施肥对照(CK)、秸秆还田不施肥(S)、秸秆还田+基肥增施N肥45 kg·hm-2(SF1,C/N=12:1)、秸秆还田+基肥正常N肥施用量(SF2,C/N=18:1)、秸秆还田+基肥减施N肥45 kg·hm-2(SF3,C/N=24:1)共5个处理.结果表明:与对照处理(CK)相比,秸秆还田不施肥处理(S)使土壤有机质、全氮和有机氮的含量分别增加7.8%、10.6%和10.9%,而使土壤中无机氮的含量减少17.1%;秸秆还田配施不同化肥处理中,当碳氮比为18:1时,土壤全氮、有机氮和无机氮含量最高,分别比对照处理增加27.2%,27.2%和25.7%.元素分析结果显示,秸秆还田S、SF1、SF2、SF3处理土壤全量有机质(SOM)中的碳、氮元素含量均有所增加,同时SOM中的C/N、H/C和O/C比值都下降.红外光谱结果表明,秸秆还田S、SF1、SF2、SF3处理,在1650~1640 cm-1和3400 cm-1处的峰强度增加,表明土壤有机质中含氮基团、酚羟基、羟基或羧基含量增加;2920 cm-1处的吸收峰增强,表明SOM中脂肪族结构增加,芳香性增强.与对照处理(CK)相比,秸秆还田不施肥(S)处理的当年水稻产量下降8.8%;配施化肥后,SF1、SF2、SF3处理水稻实际产量分别比对照(CK)处理增加12.6%、22.7%、19.1%,且当碳氮比为18:1时,增产效果最为明显;单独秸秆还田提高了土壤有机质含量,降低了其碳氮和氢碳比例,使SOM中脂肪族化合物增加,酰胺结构和芳香性增强,同时提高了土壤全氮和有机氮的含量,减少了土壤无机氮含量.  相似文献   

14.
为分析不同秸秆生物反应堆技术对茄子生产及温室土壤微环境的影响,设置常规栽培的CK、T1(秸秆22 500 kg·hm~(-2))、T2(秸秆22 500 kg·hm~(-2)+菌剂60 kg·hm~(-2)+羊粪7800 kg·hm~(-2))和T3(秸秆22500 kg·hm~(-2)+菌剂60 kg·hm~(-2)+羊粪7800 kg·hm~(-2)+腐植酸750 kg·hm~(-2))4个处理。结果表明:使用秸秆生物反应堆技术,茄子产量可以提高29.2%~32.0%,但不同秸秆反应堆处理之间无显著差异;秸秆反应堆技术可增加茄子中可溶性总糖、维生素C和固形物含量,降低硝酸盐含量,明显改善品质。3种秸秆反应堆技术均有效提高了温室土壤CO_2排放通量,增加植株根系周边土壤有机质和总氮含量,其中有机肥和菌剂的添加促进了早期CO_2释放,有利于土壤有机质和养分累积,腐植酸的添加对温室CO_2的产生影响不大,但可以提高土壤微生物代谢能力。对土壤微生物数量的分析表明,秸秆生物反应堆提高了植株根系周边土壤中的真菌数量,降低土壤细菌数量。其中T3处理倾向于提高苗期土壤中真菌数量和花期土壤中细菌数量,而T2处理倾向于提高花期和盛果期栽培土壤中的真菌数量以及盛果期栽培土壤细菌数量。研究表明,秸秆生物反应堆可以显著提高茄子产量和品质,增加温室土壤CO_2排放通量,提高植株根系周边土壤中有机质和养分含量,影响土壤中微生物代谢活性,改变栽培过程中真菌和细菌的数量变化模式。  相似文献   

15.
《农业科学学报》2019,18(5):1138-1147
A simulated grazing field experiment was conducted to determine the effect of timing and intensity of grazing on the growth and yield of a mid-late maturing spring wheat(cv. Flanker) under different watering regimes, at Wagga Wagga in southeastern Australia. The experiment was a factorial design of watering regime and pasture "grazing" as factors, with three replications. The two watering regimes were rainfed(R) and supplemental irrigation(I). There were four simulated grazing treatments: no grazing, "crash" grazing by mowing to 5 cm height on 13 June(Cut1-5), "crash" grazing by mowing to 5 cm on 15 July(Cut2-5) and "clip" grazing by mowing to 15 cm height on 15 July(Cut2-15). The lowest dry matter(simulated grazing) was obtained from RCut1-5(0.13 t ha~(–1)) and the highest(0.86 t ha~(–1)) was from ICut2-5. There was no significant difference(P0.05) among the grain yields of the grazing treatments in the respective watering regimes. However, there was significant difference(P0.05) between the grain yields of the rainfed(3.60 t ha~(–1)) and irrigated(6.0 t ha~(–1)) treatments. Under both watering regimes, the highest grain yield was obtained from the late "clip" grazings: 3.79 t ha~(–1)(RCut2-15) for rainfed and 6.47 t ha~(–1)(ICut2-15) for irrigated treatments. The lowest grain yield for the rainfed treatment was 3.26 t ha~(–1)(RCut1-5) and for the irrigated treatments, the lowest grain yield was 5.50 t ha~(–1)(ICut2-5). Harvest index(HI) was not significantly affected(P0.05) by either the watering regime or grazing. Seed weight was significantly(P0.05) affected both by the watering regime and grazing with the lowest value for 1 000-seed weight of 30.05 g(RCut2-5) and the highest value of 38.00 g(ICut2-15). Water use efficiency was significantly(P0.05) affected both by the watering regime and grazing with the lowest value of 9.94 kg ha~(–1) mm~(–1)(ICut2-5) and the highest value 13.43 kg ha~(–1) mm~(–1)(RCut2-5). By "crash" grazing late(just before stem elongation stage) to a height of 5 cm, a significantly higher(P0.05) above ground dry matter can be grazed without significantly affecting the yield both in seasons with low amount of rainfall and high amount of rainfall(irrigated in this study) although in a wet season a slightly lower(15% lower) grain yield is obtained relative to "clip grazing" to 15 cm height. Grazing of mid-late maturing wheat cultivars has the potential to fill the feed gap without significantly affecting grain yield.  相似文献   

16.
免耕覆盖对玉米产量及土壤肥力的影响   总被引:1,自引:0,他引:1  
在10a玉米连作的基础上,研究免耕覆盖和传统耕作对玉米产量和养分吸收的影响及土壤养分的变化。结果表明:免耕覆盖可以增产1 012.5kg/hm2,增产率为17.6%。免耕覆盖可以减少玉米根部和茎叶对氮素的吸收,从而增加玉米籽粒中氮素含量;同时可以促进茎叶中的钾元素向籽粒和根部转移。免耕覆盖土壤有机质、全氮、全磷、碱解氮含量比传统种植分别增加38.7%、22.8%、67%、41.6%,速效钾增幅较小,为3.0%,速效磷含量则表现为传统耕作比免耕覆盖高出1.20mg/kg。在免耕覆盖和传统耕作下,土壤硝态氮含量随土层深度的增加,均呈现先升高后降低的趋势,并且不同层次之间差异显著;免耕覆盖在110cm左右出现最大累积峰,而传统耕作最大累积峰出现在60cm左右。  相似文献   

17.
靳玮 《广东农业科学》2014,41(9):69-71,87
以玉米品种郑单538 为研究对象,通过田间试验,对陕西杨凌塿土地区经不同形态氮肥处理后玉米产 量、土壤全氮、土壤可溶性有机碳含量的变化情况进行研究,以阐明不同形态氮肥处理对玉米产量以及土壤质量的 影响,为关中平原玉米种植的合理施肥提供全面的理论依据。结果表明院施氮处理可以显著增加玉米产量。玉米生育 期内施氮处理的土壤中全氮、碱解氮含量显著高于不施氮处理。玉米生育期内不同形态氮肥处理的土壤可溶性有机 碳与不施氮的对照处理相比,无显著差异。施氮处理对于土壤微生物含量的影响不大。  相似文献   

18.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore a field trial was carried out at New Developmental Farm of The University Agriculture, Peshawar, Pakistan during winter 2012–13. The field experiment was layout in randomized complete block design with split plot arrangement having three replications. Fertilizers treatments (control, higo organic plus (composted manure, it contains N 2%, P 3%, K 3%, organic matter 40%, organic carbon 11%, Zn 145 mg kg–1, Cu 56 mg kg–1, Fe 380 mg kg–1 and Mg 228 mg kg–1), maxicrop sea gold (extract of sea weeds i.e., Sargasssum, Laminara Polysaccharide and Ascophyllum Nodosum), farm yard manure, NP (90: 60 kg ha–1), NP (120: 90 kg ha–1) and NP (150: 120 kg ha–1) were allotted to main plots while genotypes (Sandrina, Serenada and Kawe Terma) to the sub plots. Farm yard manure (10 t ha–1) and higo organic Plus (5 t ha–1) was incorporated in the soil before seed bed preparation. Maxicrop sea gold (5 lit ha–1) was sprayed after the emergence of the crop. All phosphorus was applied @ of 60, 90 and 120 kg ha–1 at the time of sowing while nitrogen @ of 90, 120 and 150 kg ha–1 in two splits/3 of the dose was applied at the time of sowing while the remaing 1/3 of the dose was applied before earthen up. Plots treated with application of NP ratio 120: 90 kg ha–1 produced maximum beet yield (76.4 t ha–1), sugar yield (11.1 t ha–1), Pol (polarizable sugar) percentage (14.67%) and more economic return (Rs.234 Thousand ha–1) as compared to control plots. Sugar beet genotype Serenada had significantly produced maximum beet yield (55.5 t ha–1), sugar yield (7.9 t ha–1), pol (polarizable sugar) percentage (14.60%), brix percentage (14.60%) and more economic return (158) as compared to other genotypes. It was concluded from the above results that sugar beet genotype Serenada treated with NP ratio 120: 90 kg ha–1 for improved sugar beet productivity and quality therefore it is recommended for general practice in agro-climatic conditions of Peshawar valley.  相似文献   

19.
The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non- sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efficiency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application of recommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5 962 and 6 894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave significantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a significant higher wheat yield than NP, and MNPK gave significant higher maize yield than both NP and NPK. Wheat yields increased significantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efficiency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha^-1 yr^-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased significantly in all treatments. Overall, the results indicated that combinations of organic manure and inorganic nitrogen, or retuming straw with NP is likely to improve soil fertility, increasing the yields achievable with wheat-maize system in a way which is environmentally and agronomically beneficial on the tested soil.  相似文献   

20.
通过大田定位试验,研究秸秆还田和氮肥减量对稻田土壤养分、碳库及水稻产量的影响。结果表明,采用适当的秸秆还田配合氮肥减量处理可以有效改善土壤理化性状,提高水稻产量。与单施纯氮270 kg·hm-2处理相比,等氮量的秸秆还田配施纯氮240 kg·hm-2处理的稻田土壤有机质、全氮、速效磷、速效钾、总有机碳含量分别显著(P<0.05)增加了33.86%、13.83%、54.64%、21.60%、33.81%,而铵态氮、可溶性有机碳和微生物碳含量分别显著(P<0.05)减少了13.69%、49.22%和32.36%。在产量方面,秸秆还田配施纯氮240 kg·hm-2的产量最高,较秸秆不还田不施氮肥处理和秸秆还田不施氮肥处理分别显著(P<0.05)增产57.90%、62.22%。在本试验条件下,秸秆还田配施纯氮240 kg·hm-2为最优的秸秆还田配合氮肥减量模式,对改善土壤养分、增加土壤碳库、提高水稻产量具有一定作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号