首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
玉米细菌性枯萎病菌PCR检测   总被引:1,自引:0,他引:1  
 根据GenBank中玉米细菌性枯萎病菌及其近似种的16S序列差异,设计了一对玉米细菌性枯萎病菌特异性引物Ps2r/Ps3r,该引物能从供试的7株玉米细菌性枯萎病菌中特异性扩增出一条268 bp的预期条带,供试的32株近似种菌株都没有扩增产物;与国内外文献报道的其它5对特异性引物相比,除引物PSA/PSB外,引物DEP1/DEP2、ES16/ESIG2c、HRP1d/HRP3c和CPSL1/CPSR2c在不同程度上对部分近似种菌株出现了扩增。试验结果表明,引物Ps2r/Ps3r和PSA/PSB能特异性扩增玉米细菌性枯萎病菌,得到预期的扩增产物。对不同系列稀释度的DNA和玉米样品中病菌的检测结果表明,由引物Ps1/Ps4和Ps2r/Ps3r组合的巢式PCR方法的检测灵敏度高于引物ITSA/ITSB和PSA/PSB组合的巢式PCR方法,也高于Bio-PCR检测方法;前者可以检测到玉米种子中300 cfu/sample的目的细菌,该检测方法在进境玉米种子样品玉米细菌性枯萎病菌的检疫中具有比较理想的应有潜力和推广价值。  相似文献   

2.
红掌细菌性疫病病原菌的PCR特异性检测   总被引:2,自引:0,他引:2  
 红掌细菌性疫病(Xanthomonas axonopodis pv. dieffenbachiae,简称Xad)是红掌等天南星科花卉毁灭性病害,该病通过带菌种苗调运不断在我国扩散蔓延,国内尚未有检测方法。通过筛选和重新设计引物,建立了Xad 的PCR 检测方法,结果表明,利用引物Xad-F / Xad-R 进行PCR,能扩增出检测Xad 的特异性DNA 片断,其灵敏度可达1 × 102 CFU / mL,DNA 的最低检出限为0. 44 ng / μL,可用于红掌苗的带菌检测和红掌细菌病害的鉴定。  相似文献   

3.
快速有效地对甘蔗重要病害病原进行诊断检测,明确监测病害的病原是科学有效防控甘蔗病害的基础和关键。云南省农业科学院甘蔗研究所通过探索研究、改进创新、优化建立了甘蔗黑穗病、锈病、白条病、宿根矮化病、赤条病、花叶病、斐济病、黄叶病、杆状病毒病和白叶病等10种重要病害13种病原的分子快速检测技术,为甘蔗病害的有效诊断和防控、脱毒健康种苗检测及引种检疫提供了技术支撑。  相似文献   

4.
西瓜细菌性果斑病菌快速免疫PCR检测   总被引:2,自引:0,他引:2  
对种子携带的西瓜细菌性果斑病菌(Acidovorax avenae subsp. citrulli)进行简单抽提和纯化,不经过DNA提取而以病原菌为模板进行PCR检测.结果显示,对带菌种子提取液采用直接PCR法最低检出限为3600个细菌/mL,而免疫PCR最低检出限可达到600个细菌/mL.免疫PCR法可以有效富集病原后再扩增,方便快速,成本低,灵敏度高,适用于种子携带微量的西瓜细菌性果斑病菌的快速鉴定.  相似文献   

5.
香蕉枯萎病菌Fusarium oxysporum f. sp. cubense和细菌性软腐病菌Dickeya zeae的复合侵染为害给香蕉产业发展带来严重挑战, 有必要建立相关病害的多重聚合酶链式反应(multiplex polymerase chain reaction, multiplex PCR)检测技术。本文基于尖孢镰刀菌古巴专化型1号生理小种(F. oxysporum f. sp. cubense race 1, FOC1)基因组contig 438区间(35 631-37 693 bp)(GenBank: AMGP01000438.1)和4号生理小种(F. oxysporum f. sp. cubense race 4, FOC4)基因组contig 195区间(4 028-6 126 bp)(GenBank: AMGQ01000195.1)存在160 bp插入序列差异设计特异扩增引物FOC-F/-R, 同时以香蕉细菌性软腐病菌D. zeae的促旋酶B 亚单位基因(the subunit B of gyrase gene)(GenBank: JQ284039)序列设计特异扩增引物gyrB-F/-R。多重PCR检测结果显示:本技术可在一次PCR扩增反应内同时检测香蕉枯萎病菌1号、4号生理小种和细菌性软腐病菌; 多重PCR的灵敏度结果表明:检测香蕉枯萎病菌的DNA浓度最低限为0.1 ng/μL, 细菌性软腐病菌的灵敏度为10 3cfu/mL;检测结果稳定可靠。因此, 本研究建立的多重PCR检测方法可有效应用于检测香蕉发病组织中的香蕉枯萎病菌和细菌性软腐病菌, 也可用于香蕉种苗和田间土壤带病菌的监测, 为香蕉种植保驾护航。  相似文献   

6.
利用PCR技术专化性检测水稻细菌性条斑病菌   总被引:3,自引:0,他引:3  
 设计水稻细菌性条斑病菌的专化性引物,并建立相应的PCR检测体系,分别对31株水稻细菌性条斑病菌和15株水稻白叶枯病菌及其它相关菌株进行了测试。结果表明,建立的PCR检测体系可专化性检测水稻细菌性条斑病菌,而水稻白叶枯病菌和其它菌株均没有扩增信号。检测灵敏度可以达到20个细菌菌体,从自然发病和人工接种发病的水稻种子成功地检测出条斑病菌。实现了对水稻细菌性条斑病菌的快速和专化性检测。  相似文献   

7.
为有效防控我国的检疫性有害生物十字花科细菌性黑斑病菌Pseudomonas syringae pv.maculicola在国内的传播与蔓延,通过设计1对特异性引物3539,利用132株靶标和非靶标菌为模板进行PCR扩增,建立了实时荧光定量PCR法,并进行了模拟种子带菌试验。结果显示,引物3539为只针对十字花科细菌性黑斑病菌扩增出的特异性产物;在模拟种子带菌检测中,常规PCR对菌悬液的检测限为10~5CFU/m L,实时荧光定量PCR的检测限为10~3CFU/m L,其中10~8CFU/m L菌液的Ct值最低,为22.90,10~3CFU/m L菌液的Ct值最高,为35.73,且不同浓度菌液间的Ct值均有显著差异;不同带菌率模拟种子的检测结果表明,常规PCR和实时荧光定量PCR能检测到的带菌率分别为0.5%和0.1%。研究表明,实时荧光定量PCR法不仅可用于病种的检测,也可用于病害的早期诊断。  相似文献   

8.
应用PCR方法快速检测黄瓜细菌性角斑病菌   总被引:1,自引:0,他引:1  
黄瓜细菌性角斑病是黄瓜上的一种重要细菌病害,其病原为丁香假单胞菌黄瓜致病变种(Pseudomonas syringae pv.lachrymans),目前未见到该病害特异性PCR检测方法的报道。通过分析丁香假单胞菌(P.syringae)不同致病变种glyceraldehyde-3-phosphate dehydrogenase 1(gap1)基因序列设计得到一对Psl特异性PCR引物。利用该引物对丁香假单胞菌不同致病变种、假单胞菌属其他种及其他属的共46株菌株进行了PCR扩增,结果表明,所有不同来源的12株黄瓜细菌性角斑病菌均得到179bp的目标片段,而所有其他参试菌株均无扩增条带,PCR检测的灵敏度为7.5×103cfu/mL。利用该方法可从接种后发病的黄瓜叶片总DNA中检测到特异条带,而健康叶片无条带。该引物的PCR检测方法可直接用于植株总DNA的检测,无需进行病原菌的分离培养,快速简便,适用于进出境检验检疫及种苗健康检测等。  相似文献   

9.
食用菌细菌性病害及防治   总被引:1,自引:0,他引:1  
一、细菌性斑点病,又叫细菌性褐斑病,主要危害蘑菇和平菇。1.发病症状局限于菌盖上,菌盖初期出现水渍状小斑点,渐渐变成黄褐色并扩大成小斑,不规则,凹陷,凹陷处呈棕褐色。湿度大时,凹斑内有粘稠的菌液,当病斑干后,菌盖往往开裂。2.病原该病由托拉斯假单胞杆...  相似文献   

10.
利用双重PCR技术快速检测水稻细菌性谷枯病菌   总被引:1,自引:0,他引:1  
根据水稻细菌性谷枯病ITS和gyrB基因,设计两对特异性PCR检测引物,建立了水稻细菌性谷枯病菌的双重PCR检测方法。用该方法对水稻细菌性谷枯病菌和其它植物源性细菌进行双重PCR扩增及灵敏度测试,并对采自不同地区的水稻样本进行水稻细菌性谷枯病菌的检测。结果显示,双重PCR方法能特异性地检测出8株水稻细菌性谷枯病菌,可从含水稻细菌性谷枯病菌浓度为102cfu/mL的菌液中检测出该病菌;采用该方法对我国不同地区的水稻材料进行检测,并未发现水稻细菌性谷枯病菌。  相似文献   

11.
双重PCR技术检测水稻白叶枯病菌和细菌性条斑病菌   总被引:1,自引:0,他引:1  
本研究分别设计并合成了白叶枯病菌的专化性引物OSF1-OSR1和条斑病菌的专化性引物XoocF-XoocR。用这两对专化性引物分别对118个参试菌株进行PCR扩增,并且通过将这两对专化性引物配对以及不断优化PCR反应条件,成功建立了双重PCR技术,同时对水稻白叶枯病菌和细菌性条斑病菌实施快速精确的检测。  相似文献   

12.
果蔗脱毒种苗甘蔗花叶病、黄叶病和宿根矮化病分子检测   总被引:1,自引:0,他引:1  
为监测2016-2017年种植的果蔗脱毒种苗脱毒效果,分别采集广州市南沙区和增城区、湛江市麻章区及华南农业大学甘蔗育种基地共83份果蔗脱毒种苗样本,进行甘蔗花叶病毒(SCMV)、高粱花叶病毒(SrMV)和甘蔗黄叶病毒(SCYLV)RT-PCR检测。结果表明SCMV的阳性样本数为3个,阳性检出率3.61%;SrMV的阳性样本数为0;SCYLV的阳性样本数为78个,阳性检出率93.98%。采用常规PCR和巢式PCR技术对采集于广州市增城区和华南农业大学甘蔗育种基地的30份果蔗脱毒种苗样本进行宿根矮化病菌(Lxx)检测,常规PCR检测阳性样本数为0,巢式PCR检测疑似阳性样本数为8,疑似阳性检出率26.67%。本研究采用茎尖组织培养脱毒技术培育的果蔗脱毒种苗能有效脱除果蔗种苗内的SCMV、SrMV和Lxx,但SCYLV的脱除效果有待进一步研究。  相似文献   

13.
烟草根黑腐病菌的PCR分子检测   总被引:5,自引:1,他引:5  
 根据烟草根黑腐病菌(Thielaviopsis basicola)与其它烟草病原真菌核糖体基因转录间隔区(internal transcribed spa-cer,ITS)序列间的差异,设计了一对特异性引物TB-5/TB-3,用于T. basicola的分子检测。利用该对引物对包括T. basicola在内的13个烟草病原菌菌株的基因组DNA进行PCR扩增,结果表明:只有T. basicola能扩增到一条400bp左右的特异性条带,其它菌株及阴性对照均无扩增产物。对烟草组织和土壤的检测结果也表明,该对引物能特异性的检测到T. basicola基因组DNA的存在。该引物对T. basicola基因组DNA检测的灵敏度为100fg/μL。  相似文献   

14.
广东果蔗宿根矮化病菌检测   总被引:1,自引:0,他引:1  
为探明广东果蔗宿根矮化病发生情况,为果蔗健康种苗生产及推广应用提供科学依据,本研究采用常规PCR与巢式PCR技术分别对广东韶关和广州南沙果蔗产区的主栽品种‘黑皮果蔗’(‘Badila’)及华南农业大学甘蔗育种基地新引进的果蔗品种‘内江蜜蔗’、‘甜城21号’、‘甜城22号’和‘甜城99号’等进行宿根矮化病菌的检测。结果表明,巢式PCR检测的阳性检出率达88.6%,明显高于常规PCR检测(40.4%);广东韶关果蔗产区‘黑皮果蔗’宿根矮化病阳性率为86.8%;广州南沙果蔗产区‘黑皮果蔗’宿根矮化病阳性率为92.7%;华南农业大学甘蔗育种基地新引进的果蔗品种除‘甜城22号’外,其他3个品种‘内江蜜蔗’、‘甜城21号’和‘甜城99号’均感染宿根矮化病菌。甘蔗宿根矮化病已在广东主要果蔗产区普遍发生,健康种苗研究与应用十分必要。  相似文献   

15.
16.
麦冬主要病害病原菌巢式多重PCR检测方法的建立   总被引:1,自引:0,他引:1  
为准确快速地诊断浙江省慈溪市麦冬常见真菌病害——炭疽病和黑斑病,基于巢式多重PCR技术,针对核糖体内转录间隔区(ITS)序列分别设计特异性引物,并优化巢式多重PCR反应条件,建立可同时快速准确检测炭疽病病原菌山麦冬炭疽菌Colletotrichum liriopes和黑斑病病原菌互隔交链孢菌Alternaria alternata的方法。结果表明,建立的巢式多重PCR检测体系特异性好,同时检测2种病原菌的灵敏度高达100 pg DNA/μL,对10个田间病样进行检测,有5个病样检测到2种病原菌,3个病样检测到其中1种病原菌,2个样品未检测到目标病原菌,验证了该体系的可行性与准确性。表明所建立的巢氏多重PCR技术可用于快速准确检测麦冬2种主要病害的病原菌。  相似文献   

17.
大白菜细菌性病害有软腐病(Erwiniacarotovora)、黑腐病(Xanthomonascompetris)、细菌性的角斑病(Pesudomonassyringae)和叶斑病(P.cichorii)四种。前两种是老病害,分布较广,为害较重;后两种是八十年代末在内蒙古、北京、天津、河南等地部分大白菜上新发生的细菌性病害,1988年曾在内蒙古部分地区严重发生,为害损失达20—30%。细菌性病害已成为大白菜生产中  相似文献   

18.
熊兴平 《植物医生》2011,24(1):54-54
“预防为主、综合防治”是我国和世界上总的植保方针。生物防治是优先的防治选择,化学防治则是最后的一道防线,这是环保的需要.也是综合防治的需要.更是人与自然和谐发展的需要.  相似文献   

19.
一种新的西瓜细菌性病害   总被引:4,自引:0,他引:4  
西瓜细菌性果斑病是近两年由国外传入的一种新病害,根据其症状有人称之为西瓜细菌性果腐病或西瓜水浸病。这种病害曾在美国东南沿海西瓜产区大流行,造成大面积瓜田被毁。近几年在我国东北、西北西瓜产区陆续发生,1990年在我国西瓜主要产区河北、山西两省的一些地区也发现了此病,其主要发生在由台湾引进的新红宝西瓜品种上,蔓延迅速,应引起高度重视。  相似文献   

20.
植物病原细菌是限制农业生产的主要原因之一,作物受害严重,造成巨大的经济损失。化学防治、农艺防治以及抗病育种等方法,对植物细菌性病害实现了较好的防治,但是这些方法各自存在着不足之处。噬菌体无处不在,有细菌的地方就有噬菌体。噬菌体具有特异性,可以自我复制,相比于植物细菌性病害的其他防治方法,噬菌体防治环境友好,且制造成本低廉,越来越多的研究学者尝试用噬菌体控制细菌性病害,以补充传统防治方法的不足。本文列举了一些较为严重的植物细菌性病害的为害、传统的防治办法,并总结了已有的噬菌体防治手段以及噬菌体防治的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号