首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three multipurpose tree species (MPTS)-leucaena (Leucaena leucocephala), sesbania (Sesbania sesban var. nubica) and pigeonpea (Cajanus cajan) were pruned at a height of 60 cm above the ground every two months, and resulting plant biomass was incorporated into the soil as green manure. For comparison, maize (Zea mays) stover was also incorporated into some plots, while some other plots were left fallow. Varying quantities of plant biomass which were incorporated into the soil over a period of 12 months caused large changes in major soil plant nutrients, and it substantially improved soil fertility. To test for improved soil fertility, test crops of maize and beans (Phaseolus vulgaris) were grown on the plots after six biomass incorporations of 4806, 13603, 16659 and 7793 kg. ha–1yr–1 for pigeonpea, sesbania leucaena and maize, respectively. Responses of the test crops indicated that sesbania and leucaena green manures improved maize stover, cobs and grain yields; and bean haulms and grain yields by 77.6% when compared to fallow plots. Residual effects of green manures still resulted in significant (P < 0.05) yield differences in the test cropin the third testing season. Economic significance of green manures in increasing food crop yields to small scale farmers is discussed.  相似文献   

2.
The effect of tree harvesting on soil mineral nitrogen and microbiological activity were investigated in an agrisilvicultural system consisting of wheat cultivated along the sides of a poplar plantation in Sweden from 1993 to 1995. Sampling for mineral nitrogen was carried out in three layers down to 90 cm at two distances, near (0.5–1.5 m) and far (4.0–5.0 m) from rows of standing, ST, and harvested trees, HT. Sampling for basic respiration and substrate-induced respiration was carried out in the 0–10 cm layer in 1993 and in the 0–10 cm and 10–20 cm layers in 1994 at the same distances from trees.There was a higher concentration of ammonium and lower concentration of nitrate closer to trees, indicating an efficient uptake of nitrate by trees and enhanced N mineralization close to trees. Shortly after tree harvesting, there were higher concentrations of nitrate and ammonium in the 0–30 cm soil layer near the harvested trees than near standing trees, suggesting a derease in nitrogen uptake by tree roots. The soil microbiological activity was lower in the harvested than the standing plots of trees, which is considered as an indication of the important role of root exudates in maintaining a larger microbial biomass close to trees.  相似文献   

3.
Naturally regenerated stands of bracatinga (Mimosa scabrella Bentham) are harvested for firewood after six to eight years of unregulated growth, debris burnt and the area planted to one cycle of intercropped maize (Zea mays L.) and beans (Phaseoulus vulgaris L.). Burning breaks dormancy of bracatinga seed (> 80% germination) marking the onset of a new fallow-crop cycle. This production system has been practiced for nearly 100 years in Southern Brazil, covering some 60,000 ha in 3,000 small farms. An estimation of above-ground biomass and nutrient accumulation was made using literature data on stand age, population numbers, tree sizes, tree biomass partitioning and concentration of major nutrients in tree tissues. A simple simulation model, used to quantify above-ground nutrient pathways and their temporal dynamics, confirmed that six to eight years is the optimal rotation length. Biomass and nutrients deposited onto the soil, peak at stand age six years, which may result in significant soil fertility improvement prior to crop planting. At year six, estimated total above-ground biomass amounts to 83 Mg ha–1; 44 Mg ha–1 available as firewood and 39 Mg ha–1 to be returned to the soil. Roughly half the amount of nutrients fixed in the above-ground bracatinga biomass would be exported in firewood and subsequent grain crops.  相似文献   

4.
A hedgerow intercropping study was conducted for 7 years in West Sumatra, Indonesia on an acid and highly A1-saturated (72%) soil to determine growth and yield responses of tree hedgerows and upland rice and cowpea intercrops. Three tree species,Paraserianthes falcataria, Calliandra calothyrsus, andGliricidia sepium, and a no tree control were planted at three lime rates of zero, 375 kg ha–1, and liming to 25% Al+H saturation. Annual fertilizer inputs of 20 kg P and 50 kg K ha–1 were kept low to approximate low input farming systems. The trees were pruned 4 to 6 times per year and prunings applied to the intercrops.Paraserianthes andCalliandra grew vigorously, whileGiricidia grew poorly and was replaced after four years withFlemingia macrophylla. Hedgerow growth and yields were reported in a previous paper [Evensen et al., 1994].Rice and cowpea yields initially increased with lime andParaserianthes pruning application, but yields and soil cations (Ca, Mg, and K) declined until fertilizer inputs were increased after four years. Thereafter, crop yields increased and soil cations returned to original levels. Soil C and N were maintained over the 7 years on plots with trees. These results indicate little build-up of nutrient cations due to recycling by the trees and suggest that successful alley farming on such highly weathered soils requires maintenance of soil fertility with external inputs.  相似文献   

5.
The choice of an appropriate hedgerow species is one of the most critical decisions in exploiting the value of a contour hedgerow system. The implications of hedgerow species with nitrogen (N)-fixation capacity on hedgerow-crop competition and crop productivity have been widely debated. We examined the agronomic significance of N-fixation by comparing the performance of species representing three classes of hedgerow vegetation: A nitrogen-fixing tree legumeGliricidia sepium), a non-nitrogen fixing tree (Senna spectabilis syn.Cassia spectabilis), and a forage grass (Pennisetum purpureum). The 4-year study investigated the hedgerow biomass and nutrient yields, and their relative effects on the performance of two annual crops commonly grown in alley farming systems, with emphasis on hedgerow-crop interference. The work was done on an Ultic Haplorthox (pH 4.8, organic C 1.9%, total N 0.18%).Senna produced 46% more pruning biomass on an annual basis than didGliricidia; N supplied to the alley crops was similar toGliricidia in the first year of observation, but 20–30% higher in the succeeding years. Upland rice and maize grain yields and total dry matter were unaffected by tree species, but the nitrogen-fixing tree exerted less competitive effects on the annual crops growing in adjacent rows. Grass hedgerows reduced maize yields 86% by the second year, indicating an unsustainable drawdown of nutrients and water. We conclude that hedgerow systems composed of a nitrogen-fixing tree did not exert significant advantages compared to a non-fixing tree species, and that factors other than N-fixation were more important determinants for the choice of hedgerow species.  相似文献   

6.
Nitrogen deficiency is widespread in southern Africa, but inorganic fertilizers are often unaffordable for smallholder farmers. Short-duration leguminous fallows are one possible means of soil fertility restoration. We monitored preseason topsoil (0 to 20 cm) ammonium and nitrate, fallow biomass production and grain yields for three years in a relay cropping trial with sesbania [Sesbania sesban (L.) Merr.] and maize (Zea mays L.). Sesbania seedlings were interplanted with maize during maize sowing at 0, 7400 or 14,800 trees ha–1, in factorial combination with inorganic N fertilizer at 0 or 48 kg N ha–1 (half the recommended rate). After maize harvest, fallows were allowed to grow during the seven-month dry season, and were cleared before sowing the next maize crop. Both sesbania fallows and inorganic N fertilizer resulted in significantly greater (P < 0.01 to 0.05) preseason topsoil nitrate-N than following unfertilized sole maize. In plots receiving no fertilizer N, preseason topsoil inorganic N correlated with maize yield over all three seasons (r 2 = 0.62, P < 0.001). Sesbania fallows gave significantly higher maize yields than unfertilized sole maize in two of three years (P < 0.01 to 0.05). Sesbania biomass yields were extremely variable, were not significantly related to sesbania planting density, and were inconsistently related to soil N fractions and maize yields. Short-duration fallows may offer modest yield increases under conditions where longer duration fallows are not possible. This gain must be considered against the loss of pigeonpea (Cajanus cajan L. Millsp) harvest in the similarly structured maize-pigeonpea intercrop common in the region.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
The relay cropping of sesbania (Sesbania sesban) — a N2-fixing legume — with maize (Zea mays) has been proposed as a strategy to increase soil fertility and food production in densely populated areas in southern Africa. We determined the production of relay-cropped maize and sesbania at three landscape positions under researcher-designed and farmer-managed conditions in southern Malawi. Three landscape positions (dambo valley or bottomland, dambo margin with < 12% slope, and steep slopes with > 12% slope) were examined in factorial combination with N sources for maize (no added N, relay-cropped sesbania, and calcium ammonium nitrate fertilizer). Relay cropping of sesbania with maize increased maize grain yield, as compared to unfertilized sole maize in two of three years. Split application of 96 kg N ha–1 as N fertilizer, however, was more effective than sesbania in increasing maize yields. Survival of sesbania seedlings and biomass production of sesbania were greater in the dambo valley and dambo margin than on steep slopes. Maize yields tended to be lower on steep slopes than in the dambo valley and dambo margin areas. Biomass production of sesbania and hence the potential benefits of intercropping sesbania with maize appear greater in the dambo valleys and dambo margins than on steep slopes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

9.
Studies on tree crop interaction under rainfed condition in Dehradun valley were conducted for 13 years during 1977 to 1990. Grewia optiva (Bhimal), Morus alba (Mulbery) and Eucalyptus hybrid were tried along with rice (CV: Akashi) — wheat (CV: RR-21) rotation. One-year-old tree seedlings of the above tree species were planted in line, 5 m apart in N-S direction, in July 1977, in the middle of the plot (size 20 m × 20 m). Eucalyptus was first harvested in 1987. Grewia optiva, Morus alba and coppice of Eucalyptus were harvested in 1990. All tree species had depressing effect on crop yields. Eucalyptus had maximum effect in depressing crop yield till the first harvest and had least effect thereafter. From 1987 onwards, Morus alba affected rice most, while wheat was mostly affected by Grewia optiva. The depressing effect on an average varied from 28 to 34% depending upon the species.Distance of tree line from the crop significantly affected the crop yield upto a distance of 5 m and there was 39% decrease in crop yield upto 1 m, 33% from 1–2 m, 25% from 2–3 m and 12% from 3–5 m distance. Annual removal of lops and tops from trees partly compensated the deficit. Grewia optiva could produce 1.08 t ha–1 yr–1 of branches and 0.26 t ha–1 yr–1 of leaves (air dry) and 1.28 t ha–1 yr–1 of branches and 0.28 t ha–1 yr–1 of leaves were obtained from Morus alba. Wood (ADT) produced by the trees was 33.6 t ha–1 from Eucalyptus, 9.5 t ha–1 from Grewia optiva and 11.6 t ha–1 from Morus alba.  相似文献   

10.
Swamy  S.L.  Mishra  A.  Puri  S. 《New Forests》2003,26(2):167-186
A study of an agrisilviculture system comprising Gmelina arborea and soybean (Glycine max) was conducted in the subhumid region of Central India. Above- and below-ground biomass production and distribution of coarse and fine roots were studied in 4-year-old G. arborea, planted at a spacing of 2 × 2 m, 2 × 3 m, 2 × 4 m and 2 × 5 m. The total biomass varied from 10.89 Mg ha–1 to 3.65 Mg ha–1 depending on the tree density. Among the different tree components, stemwood contributed maximum biomass (54.3–79.4%), followed by branches and leaves. Root distribution pattern showed that most of the coarse roots were distributed in the top 40 cm of soil, whereas fine roots were concentrated in the top 20 cm. Coarse root biomass decreased with an increase in spacing. The spread of roots was asymmetrical in trees planted at 2 × 2 m and 2 × 3 m spacings, while it was symmetrical in trees planted at wide spacings. No significant difference was observed in the fine root biomass in different stands. The root:shoot ratio increased with an increase in spacing. Crop (soybean) growth and productivity varied significantly and it increased with a decrease in tree density. Soybean yield varied between 1.5 Mg ha–1 to 2.1 Mg ha–1. The role of root architecture of G. arborea trees on productivity of crops under agri-silviculture system is discussed.  相似文献   

11.
In southern Benin, West Africa, two alley cropping systems were studied from 1986 to 1992. Yield development was followed in a maize and cassava crop rotation vs. intercropping system, with alleys of Leucaena leucocephala (Lam.) de Wit and Cajanus cajan (L.) Millsp. vs. a no-tree control, with and without NPK fertiliser. Without alleys, NPK fertilisation maintained high yield levels of 2–3 t maize dry grain plus 4–6 t ha–1 cassava root DM in intercropping, 3–4 t ha–1 maize and 6–10 t ha–1 cassava in solercropping. Without NPK, final yields seemed to stabilise at about 1 t maize plus 2 t cassava in intercropping and twice as much in each solecrop. Alley cropping induced significant yield increases by about 50% with both tree species in unfertilised, intercropped maize, and with Cajanus in fertilised, solecropped cassava. In monetary terms, the NPK-fertiliser response of stabilised yields was significant for all treatments except the solecropped Leucaena alleys. It is concluded that on Ultisols with low nutrient status in the upper rooting zone, alley cropping with low-competitive tree species may improve food crop yields but the greatest monetary output is achieved by intercropping with mineral fertiliser independent of the presence or absence of an agroforestry component.  相似文献   

12.
Tithonia diversifolia, a shrub in the family Asteraceae, is widely distributed along farm boundaries in the humid and subhumid tropics of Africa. Green biomass of tithonia has been recognized as an effective source of nutrients for lowland rice (Oryza sativa) in Asia and more recently for maize (Zea mays) and vegetables in eastern and southern Africa. This paper reviews the potential of tithonia green biomass for soil fertility improvement based on recent research in western Kenya. Green leaf biomass of tithonia is high in nutrients, averaging about 3.5% N, 0.37% P and 4.1% K on a dry matter basis. Boundary hedges of sole tithonia can produce about 1 kg biomass (tender stems + leaves) m–1 yr–1 on a dry weight basis. Tithonia biomass decomposes rapidly after application to soil, and incorporated biomass can be an effective source of N, P and K for crops. In some cases, maize yields were even higher with incorporation of tithonia biomass than with commercial mineral fertilizer at equivalent rates of N, P and K. In addition to providing nutrients, tithonia incorporated at 5 t dry matter ha–1 can reduce P sorption and increase soil microbial biomass. Because of high labor requirements for cutting and carrying the biomass to fields, the use of tithonia biomass as a nutrient source is more profitable with high-value crops such as vegetables than with relatively low-valued maize. The transfer of tithonia biomass to fields constitutes the redistribution of nutrients within the landscape rather than a net input of nutrients. External inputs of nutrients would eventually be required to sustain production of tithonia when biomass is continually cut and transferred to agricultural land.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
A hedgerow intercropping study was conducted for 7 years in West Sumatra, Indonesia on an acid and highly Al-saturated soil to determine growth and yield responses of tree hedgerows and upland rice and cowpea intercrops. Three tree species,Paraserianthes falcataria, Calliandra calothyrsus, andGliricidia sepium and a no-tree control were planted at three lime rates with low annual fertilizer inputs of 20 kg P and 50 kg K ha–1.Paraserianthes andCalliandra grew vigorously, whileGliricidia grew poorly and was replaced after four years withFlemingia macrophylla. After four years,Paraserianthes yields declined due to tree mortality, probably due to intensive pruning.Calliandra andFlemingia were well adapted to intensive pruning (4 to 6 times per year). Gliricidia growth was especially limited by low soil Ca availability and high soil acid saturation.Calliandra andFlemingia yields increased with liming only in the last several years of the study whileParaserianthes did not respond to lime. The species can be tentatively ranked in response to lime as:Gliricidia > Calliandra > Flemingia > Paraserianthes.  相似文献   

14.
Mattsson  Stefan  Bergsten  Urban 《New Forests》2003,26(3):217-231
The aim of this study was to quantify the effects of different soil scarification methods on tree growth. Soil scarification influenced stem volume and stem biomass yield of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) in a 17-year-old field trial in boreal Sweden. Soil scarification (disc trenching, mounding and ploughing) resulted in an average stem volume yield of 3.1 and 34.2 m3 ha–1 on the poor and intermediate sites, respectively, while corresponding values for no soil scarification were 0.9 and 16.7 m3 ha–1. In comparison to no scarification, ploughing increased volume yields by 500% on the poor site and by 200% on the intermediate sites. The ranking according to stem volume yield was ploughing > disc trenching = mounding no soil scarification. Averaged over the two sites, the mean annual increment of stem biomass was 219% and 145% higher (in d.w., 0.26 kg and 0.34 kg per sample tree) after ploughing compared with no soil scarification, for the average and dominant sample trees, respectively. Although not significant, the increased growth rate after soil scarification decreased the average stem basic wood density of the sample trees with 1.6% and 5.3%, at the poor and intermediate sites, respectively. In conclusion, soil scarification significantly increased the 17-year stem volume yield compared with no scarification. The results also indicate that the difference in stem biomass yield between ploughing and the other methods, especially no soil scarification, will increase even more in the near future.  相似文献   

15.
Moisture and fertility interactions in a potted poplar-barley intercropping   总被引:1,自引:0,他引:1  
Through proper design and management of a tree-based intercropping system, competitive interactions can be reduced and complementary interactions promoted so that tree and crop components maximize sharing of resource pools. In this experiment, main and interaction effects of three levels of soil moisture (15 KPa, 15–50 KPa and 15–300 KPa) and three levels of soil N (35, 70 and 140 kg N ha–1), on growth, development and yield of intercropped poplar (Populus spp.) clone DN 177 and barley (Hordeum vulgare, var. OAC Kippen), were investigated in a potted greenhouse experiment.Barley growth and development and grain yield were significantly (p<0.05) affected by the levels of soil moisture and N tested but, growth and development of poplar was not. Moisture and N levels contributed their maximum effect to final grain yield when the other was presented in adequate quantities. However, the treatment combination of highest levels of moisture and N did not significantly affect the grain yield when compared to the combination of medium levels of moisture and N. It appears therefore that an increase in the level of moisture and N beyond an optimum level is not likely to significantly affect final grain yield or above ground biomass.There was no difference in the final grain yield or other parameters between the monocropped and intercropped barley, suggesting that poplar did not compete for moisture or N with barley. The total aboveground biomass produced per pot in the intercropped system was 14% higher than in the monocropped system. As there was no difference in the final grain yield, the tree intercropped treatment has an advantage over monocropped systems in terms of resource utilization.  相似文献   

16.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

17.
An understanding of the rooting pattern of tree species used in agroforestry systems is essential for the development and management of systems involving them. Seasonal variation, depth wise and lateral distribution of biomass in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in four tree species under tree only and tree+crop situations at ICAR Research Farm, Barapani (Meghalya), India. The tree species were mandarin (Citrus reticulata), alder (Alnus nepalensis), cherry (Prunus cerasoides) and albizia (Paraserianthes falcataria). The contribution of fine roots to the total root biomass ranged from 87% in albizia to 77% in mandarin. The bulk of the fine roots (38% to 47%) in the four tree species was concentrated in the upper 10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth in alder (46%) and albizia (51%) and at 0–10 cm in cherry (41%) and mandarin (48%). In all the four tree species, biomass of both fine- and coarse-roots followed a unimodal growth curve by showing a gradual increase from spring (pre-rainy) season to autumn (post rainy) season. Biomass to necromass ratio varied between 2 to 3 in the four tree species. The maximum (3.2) ratio was observed during spring and the minimum (2) in the rainy season. In alder and albizia, the fine roots were distributed only up to 1 m distance from the tree trunk but in the other two species they were found at a distance up to 1.5 m from the tree trunk. The annual fine root production varied from 3.6 Mg ha–1 to 6.2 Mg ha–1 and total production from 4.2 to 8.4 Mg ha–1 in albizia to mandarin, respectively. Cherry and mandarin had a large number of woody roots in the surface layers which pose physical hindrance during soil working and intercultural operations under agroforestry. But the high biomass of roots of these two species may be advantageous for sequential or spatially separated agroforestry systems. However, alder and albizia have the most desirable rooting characteristics for agroforestry systems.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Fine root and nodule production and turnover in pruned 2- and 8-yr-old Erythrina poeppigiana (Walp.) O.F. Cook trees were estimated under humid tropical conditions by applying the compartment flow model (CFM) to fine root and nodule biomass and necromass measured in sequentially taken core samples. Shoot pruning intensities compared were complete pruning (i.e., complete removal of shoots) and partial pruning (i.e., retention of one branch on the pruned stump). The CFM provided reasonable estimates of nodule dynamics but did not apply to fine root data. Over a five-month observation period, nodule production in completely and partially pruned 2-yr-old trees was 58.2 and 115 g tree–1, respectively, and the corresponding values in 8-yr-old trees were 26.8 and 26.4 g tree–1. Senescent nodules and fine roots pass to soil organic matter via decomposition. Partially and completely pruned 2-yr-old trees added 95.4 and 50.4 g tree–1 decomposed nodules to soil, respectively. The respective value for 8-yr-old trees were 26.7 and 36.5g tree–1. Nodule and fine root turnover was compensated for by new production at 10–14 weeks after pruning. The retention of a branch on the pruned E. poeppigiana tree stump allows better fine root and nodule survival, and enhances tree biomass production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
Nitrogen is normally the nutrient most limiting production of maize (Zea mays) — the main staple food crop — in southern Africa. We conducted a field study to determine the effect of N sources on soil nitrate dynamics at three landscape positions in farmers' fields in southern Malawi. The landscape positions were dambo valley or bottomland, dambo margin, and steep slopes. The N sources were calcium ammonium nitrate fertilizer applied at 120 kg N ha–1, biomass from Sesbania sesban, and no added N. Sesbania biomass was produced in situ in the previous season from sesbania relay cropped with maize. Nitrate in the topsoil (0 to 15 cm depth) increased to 85 days after maize planting (mean = 48 kg N ha–1) and then decreased markedly. Application of N fertilizer and sesbania biomass increased soil nitrate, and nitrate-N in topsoil correlated positively with amount of incorporated sesbania biomass. The strongest correlation between sesbania biomass added before maize planting and topsoil nitrate was observed at 85 days after maize planting. This suggests that the sesbania biomass (mean N content = 2.3%) mineralized slowly. Inorganic N accumulated in the subsoil at the end of the maize cropping season when N fertilizer and sesbania were applied. This study demonstrated the challenges associated with moderate quality organic N sources produced in smallholder farmer's fields. Soil nitrate levels indicated that N was released by sesbania residues in the first year of incorporation, but relay cropping of sesbania with maize may need to be supplemented with appropriately timed application of N fertilizer.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The objectives of the study were to investigate mineral soil profiles as a living space for microbial decomposers and the relation of microbial properties to soil acidity. We estimated microbial biomass C on concentration (g g–1 DW) as well as on volume basis (g m–2) and the microbial biomass C to soil organic C ratio along a vertical gradient from L horizon to 20 cm in the mineral soil and along a gradient of increasing acidity at five beech forest stands in Germany. Microbial biomass C concentration ranged from 17,000–34,000 g Cmic g–1 DW in the litter layer and decreased dramatically down the profile to 29–264 g Cmic g–1 DW at 15–20 cm depth in the mineral soil. This represents depth gradients of microbial biomass C concentrations ranging from a factor of 65 in slightly acidic and up to 875 in acidic soils. In contrast, microbial biomass C calculated on a volume basis (g Cmic m–2) showed a different pattern since a considerable part of the microbial biomass C was located in the mineral soils. In the soil profile 22–34% of the microbial biomass C was found in the mineral soil at strictly acidic sites and as much as 64–88% in slightly acidic soils. The microbial biomass C to soil organic carbon ratios decreased in general down from the L horizon in the forest floor to 0–5 cm depth in the mineral soils. In strongly acidic mineral soils however, the C to soil organic carbon ratio increased with depth, suggesting a positive relation to increasing pH. We conclude from depth gradients of soil pH and microbial biomass C to soil organic carbon ratio that pH affects this ratio at acidic sites. The inter-site comparison indicates that acidity restricts microbial biomass C in the mineral soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号