首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malassezia species are commensal organisms of human and animal skin that occasionally act as opportunistic pathogens. The lipid-dependent species are associated with human skin disorders, whereas the non-lipid-dependent species (Malassezia pachydermatis) is considered as an opportunistic secondary pathogen affecting the canine skin surface and ear canal. This study evaluated the relationship between Malassezia yeasts, their population size, and the occurrence of skin lesions from healthy and skin-diseased dogs. The efficiency of cytological examination and fungal culture for Malassezia detection was also evaluated. From March 2002 to July 2003, 33 healthy dogs and 54 dogs with pruritic localized skin diseases were examined; skin swabs (1218) were collected from 7 anatomical sites for culture and cytological examination. Malassezia prevalence according to anatomical site and the agreement between cytological results and fungal cultures were statistically analyzed. Differences in mean colony forming unit counts between positive healthy and diseased dogs were evaluated using the Bonferroni test for post hoc pair-wise comparisons. In healthy dogs, Malassezia yeasts were most frequently isolated in the perianal and perioral areas. The frequency of isolation and population size of Malassezia species were higher in dogs with localized dermatitis, especially in affected areas, indicating a role for Malassezia in the occurrence of skin lesions. Malassezia pachydermatis was the species most commonly cultured from the skin and external ear canal of healthy and diseased dogs; isolation of lipid-dependent yeasts from healthy dogs was less frequent. Using fungal culture as the gold standard, cytological examination showed good relative specificity (95%) but very low relative sensitivity (30%).  相似文献   

2.
The Malassezia pachydermatis populations of the axilla and groin of 12 normal and 12 atopic dogs were compared using tape-strips and contact plates. When assessed by either method, the mean density of yeasts in the groin of the atopic dogs was significantly greater (P<0.05) than that of the normal dogs, suggesting that the cutaneous microenvironment of the groin region of the atopic dogs favoured colonisation by this yeast. Differences between the counts from the axilla were not significant. The frequency of isolation of yeasts from both dogs and sites was significantly higher (P<0.05 and P<0.001, respectively) in the atopic group. There was a very highly significant correlation (P<0.001) between the tape-strip counts and contact plate counts in the atopic group only. This study suggests that isolation of numerous M pachydermatis colonies from the axilla and groin of dogs using contact plates is indicative of elevated skin surface populations. The simplicity of the contact plate method makes it suitable for the routine quantitative culture of cutaneous M pachydermatis populations in dogs with dermatological disease.  相似文献   

3.
Carriage of Malassezia spp. yeasts in healthy Cornish Rex cats (CRC) was compared with that in Devon Rex (DRC) and Domestic short-haired (DSH) cats. Samples obtained from the left external ear canal, anus and claw fold of digit III of the left fore foot by swabbing, and the axilla and groin using contact plates, were incubated for yeasts on modified Dixon's agar at 32 degrees C for 7 days. Malassezia species were isolated from 90% of the DRC, but from only 39% of the CRC and 50% of the DSH cats. M. pachydermatis accounted for 121 of 141 Malassezia spp. isolates. Five CRC were colonized by M. pachydermatis alone, one CRC yielded only M. nana, and one cat yielded only M. slooffiae, whereas five CRC were colonized by both M. pachydermatis and M. nana and another yielded M. pachydermatis, M. slooffiae and M. nana. M. nana was primarily isolated from the ear canal, whereas M. slooffiae was most often isolated from the claw. Both the frequencies of isolation and the population sizes of M. pachydermatis at all sites sampled in the CRC were comparable to those of 10 healthy DSH cats. Populations of M. pachydermatis in the left axilla and left and right groin in the CRC were significantly lower when compared with counts in a group of 21 healthy DRC, a breed with very similar coat characteristics but prone to seborrheic dermatitis caused by M. pachydermatis.  相似文献   

4.
Skin and mucosal carriage of Malassezia pachydermatis was studied in 20 healthy pet dogs of various breeds and in 20 kennelled beagles. Using swabs, anal carriage was detected in 10 pet dogs and 11 beagles and the nose, mouth, prepuce and vulva were shown to be infrequently colonised. M pachydermatis was isolated from the external ear canal of 11 beagles and two pet dogs; both the population sizes and frequency of isolation were significantly (P<0·05) greater in the beagles. The yeast was infrequently isolated from the axilla and groin in low numbers using contact plates and detergent scrub samples but was often cultured from the lower lip and the dorsal interdigital spaces; isolation frequencies and population sizes in the two groups of dogs were not significantly different. These results demonstrate that the anus, external ear canal and lip and interdigital skin of healthy dogs are frequently colonised by M pachydermatis.  相似文献   

5.
Malassezia pachydermatis is considered to be a contributing factor to canine atopic dermatitis (AD). The purpose of this study was to investigate the humoral response to a commercially produced M. pachydermatis extract. Fifteen atopic dogs with Malassezia overgrowth on the skin (MD), 16 atopic dogs without MD, three atopic dogs with overgrowth of Malassezia in the ears only (MO), and 12 normal dogs were intradermally tested with M. pachydermatis extract at 50, 100, 250, 500, 1000, 2000 and 4000 PNU mL(-1). All dogs were evaluated cytologically by cutaneous tape strip and bilateral ear exudate sampling to determine presence of MD or MO. Each had serum evaluated for anti-Malassezia IgE using three Malassezia extracts with an ELISA assay. The irritant threshold concentration at which healthy nonatopic dogs ceased to react was 1000 PNU mL(-1). There was a significant difference in intradermal test reactivity between the atopic groups. At this dilution, 93% (14/15) of the atopic MD group, 31% (5/16) of the atopic group without MD or MO, and 100% (3/3) of the atopic MO only group reacted. There were no significant differences in the serum IgE levels as measured by the Greer ELISA assay, between any groups using any of the three extracts. These results support that Greer's M. pachydermatis extract is useful for intradermal testing of dogs with an allergic phenotype, and that atopics with MD are more likely to have a type-1 Malassezia hypersensitivity than those without. The ELISA assay may require further development in order to be useful for the diagnosis of Malassezia hypersensitivity.  相似文献   

6.
In 12 cases of lethal acrodermatitis (LAD), four sampling techniques (brush, swab, scrape and adhesive tape strip) were used to study the distribution of yeasts in various body sites and these results were compared with those from five cases of atopic dermatitis and those of 10 normal dogs. Malassezia was frequently isolated from lesional and non-lesional skin and haircoat, footpads, nails and mucous membranes from dogs with either LAD or atopic dermatitis, although, generally, more Malassezia organisms were isolated from LAD cases. In normal dogs, Malassezia was most frequently recovered from the ear canal and the perianal skin. Candida was isolated frequently from dogs with LAD, but only a single isolate of this yeast was found in the other two groups. Fungal hyphae and pseudohyphae, probably Candida albicans, could be detected in samples collected from the nails and footpads of dogs with LAD. Both Malassezia and Candida could be isolated using all four sampling techniques. The MacKenzie (toothbrush) technique and adhesive tape strip cultures proved simple methods for the semiquantitative evaluation of yeasts. The high recovery rate of Malassezia and Candida from dogs with LAD is probably related to immune dysfunction, particularly T-cell dysfunction, known to be present in these dogs. C albicans infection may in part be responsible for the pathogenic changes of the nails and footpads commonly seen in cases of LAD.  相似文献   

7.
The aim of this study was to investigate the presence of dermatophytes and yeasts in healthy and diseased dogs. A total of 633 samples were collected from 26 healthy animals (104 samples), 131 with dermatitis (343 samples), 74 with otitis (148 samples), and 19 with ocular diseases (38 samples). Cultures from healthy animals were positive for Malassezia pachydermatis in 13.5% (7/52) of samples from skin, 42.3% (11/26) from ear, and 3.8% (1/26) from eye. Fungal growth was observed in 20.4% (70/343) samples from animals with dermatitis. Microsporum canis was the most isolated fungus (n = 39), followed by M. pachydermatis (n = 30) and Malassezia sp. (n = 3). Of the 148 samples from dogs with otitis, 90 (60.8%) were positive for M. pachydermatis, and of the clinical specimens from the conjunctiva of animals with ophthalmic disease, 2.6% (1/38) presented positive cultures for M. pachydermatis. Only 14.3% (2/14) of the positive cultures for M. pachydermatis and 40.9% (9/22) of those for M. canis were positive in the direct exam. Direct exams were positive in 84.3% (70/83) of the culture positive samples from affected ears of dogs with otitis. Malassezia pachydermatis may act as an aggravating factor in the occurrence of cutaneous diseases, or the isolation of M. canis may be associated with the onset of dermatophytosis. Fungal culture, rather than microscopic examination, should be used as the definitive diagnostic test for dermatomycoses and otitis.  相似文献   

8.
Treatment of Malassezia pachydermatis-associated seborrhoeic dermatitis with oral itraconazole was investigated in six Devon Rex cats (DRC). The cutaneous populations of Malassezia were determined using contact plates and a swab-wash method before and after 21 days of pulse treatment with itraconazole (5 mg kg-1 once daily, 7 days on, 7 days off, 7 days on). Before treatment, all cats had greasy seborrhoeic dermatitis involving the axillae, groin, claw folds and palmar and plantar interdigital skin, and two had similar lesions on the ventral neck. After treatment, there was a significant (P<0.05) reduction in overall clinical scores and in scores at all individual sites assessed, except for the interdigital skin (P=0.068). Population sizes of M. pachydermatis in the left and right axillae, left and right groin and palmar interdigital skin were significantly (P<0.05) reduced, whereas the reduction in claw fold counts did not reach significance (P=0.068). The dramatic reduction in yeast counts and an associated marked clinical improvement of the seborrhoeic dermatitis provide important pilot data on the potential value of oral itraconazole in the management of seborrhoeic dermatitis associated with M. pachydermatis in DRC.  相似文献   

9.
Adhesive tape strip and dry swab sampling techniques were compared for the detection of Malassezia pachydermatis on the skin of dogs with chronic dermatitis. One hundred and four dogs were sampled by each of the techniques. Two methods, a culture method and a stain method, were used to assess the sampling techniques. By the adhesive tape strip sampling technique, M. pachydermatis was detected on 83 (80%) dogs using the culture method and on 45 (43%) dogs using the stain method. By the dry swab sampling technique, M. pachydermatis was detected on 55 (53%) dogs using the culture method and on 33 (32%) dogs using the stain method. The study showed that the adhesive tape strip sampling technique, using the culture method, detected Malassezia on the skin of significantly more dogs (P<0.001) than the same technique using the stain method and also significantly more than the dry swab sampling technique, using either the culture or stain methods. It was also shown that an adhesive tape sample could be used to transfer cells to a slide for staining and microscopy prior to being used for culturing Malassezia.  相似文献   

10.
OBJECTIVE: To determine the functionality of canine anti-Malassezia IgE via the passive transfer of immediate hypersensitivity localized to the skin (ie, cutaneous anaphylaxis) from atopic dogs with dermatitis attributable to overgrowth of Malassezia pachydermatis (Malassezia dermatitis [MD]) to healthy recipient dogs by use of the Prausnitz-Küstner (P-K) technique. ANIMALS: 7 clinically normal dogs, 32 atopic dogs with MD, serum from 11 atopic dogs with MD, and 3 healthy dogs without prior sensitization to M pachydermatis. PROCEDURE: Serum from atopic dogs with MD was used for P-K tests in 3 clinically normal recipient dogs. Serial dilutions of untreated, heat-inactivated, IgE-absorbed, and bovine serum albumin (BSA)-absorbed (control) aliquots of serum were injected ID in triplicate for dermal sensitization. Twenty-four, 48, and 72 hours later, a crude extract of M pachydermatis was injected ID into the sites used for sensitization injections, and immediate hypersensitivity reactions were graded on a 4-point scale. RESULTS: Untreated serum caused P-K reactivity beginning 24 hours after passive sensitization and persisting through 72 hours (titers, 1:32 to 1:64). Heat inactivation and IgE-absorption of serum eliminated P-K reactivity, whereas treatment of serum with BSA did not. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of P-K test results supports the passive transfer of cutaneous anaphylaxis by anti-Malassezia IgE and indicates it is functional in type-1 hypersensitivity reactions of atopic dogs with MD. Reduction or blockade of anti-Malassezia IgE in atopic dogs with MD may provide better clinical control of the disease.  相似文献   

11.
A series of 18 allergic cats with multifocal Malassezia spp. overgrowth is reported: atopic dermatitis was diagnosed in 16, an adverse food reaction in another and one was euthanized 2 months after diagnosis of Malassezia overgrowth. All the cats were otherwise healthy and those tested (16 out of 18) for feline leukaemia or feline immunodeficiency virus infections were all negative. At dermatological examination, multifocal alopecia, erythema, crusting and greasy adherent brownish scales were variably distributed on all cats. Cytological examination revealed Malassezia spp. overgrowth with/without bacterial infection in facial skin (n = 11), ventral neck (n = 6), abdomen (n = 6), ear canal (n = 4), chin (n = 2), ear pinnae (n = 2), interdigital (n = 1) and claw folds skin (n = 1). Moreover, in two cats Malassezia pachydermatis was isolated in fungal cultures from lesional skin. Azoles therapy alone was prescribed in seven, azoles and antibacterial therapy in eight and azoles with both antibacterial and anti-inflammatory therapy in three of the cats. After 3-4 weeks of treatment, substantial reduction of pruritus and skin lesions was observed in all 11 cats treated with a combined therapy and in five of seven treated solely with azoles. Malassezia spp. overgrowth may represent a secondary cutaneous problem in allergic cats particularly in those presented for dermatological examination displaying greasy adherent brownish scales. The favourable response to treatment with antifungal treatments alone suggests that, as in dogs, Malassezia spp. may be partly responsible for both pruritus and cutaneous lesions in allergic cats.  相似文献   

12.
OBJECTIVE: To investigate the potential cell-mediated immune response of atopic dogs to the yeast Malassezia pachydermatis and to correlate it with the type-1 hypersensitivity (humoral) response of the same population of dogs. ANIMALS: 16 clinically normal dogs, 15 atopic dogs with Malassezia dermatitis, 5 atopic dogs with Malassezia otitis, and 7 atopic control (ie, without Malassezia dermatitis or otitis) dogs. PROCEDURE: A crude extract of M pachydermatis was extracted for use as an intradermal allergy testing reagent and for stimulation of isolated peripheral blood mononuclear cells in vitro. Flow cytometry was also used to assess cell surface antigenic determinants (CD3, CD4, CD8, CD14, CD21, CD45RA, surface immunoglobulin) on peripheral blood mononuclear cells. RESULTS: Atopic dogs with cytologic evidence of Malassezia dermatitis had an increased lymphocyte blastogenic response to crude M pachydermatis extract, compared with clinically normal dogs and dogs with Malassezia otitis. Atopic control dogs did not differ significantly in their responses from atopic dogs with Malassezia dermatitis or otitis. A significant correlation was not found between the lymphocyte blastogenic response and the type-1 hypersensitivity response to M pachydermatis within any of the groups. CONCLUSIONS AND CLINICAL RELEVANCE: Cell-mediated and humoral reactivities to M pachydermatis contribute to the pathogenesis of atopic dermatitis in dogs but are not directly correlated. Modification of the dysregulated immune response toward M pachydermatis may assist in the reduction of pathologic changes associated with an atopic dermatitis phenotype in dogs.  相似文献   

13.
IgG immunoreactivity to Malassezia pachydermatis was compared in atopic and non-atopic dogs. Malassezia pachydermatis proteins with a molecular weight of 98 kDa were recognized at a significantly higher frequency in the sera of atopic dogs. Most of the atopic dogs with Malassezia dermatitis had a greater IgG response than did normal dogs.  相似文献   

14.
The purpose of this study was to investigate the diversity of yeast associated with the degree of canine seborrheic dermatitis (SD) by anatomical sites. Fifty-seven samples were divided as 17 healthy skin, 20 with primary seborrheic dermatitis (PSD), and 20 with secondary seborrheic dermatitis (SSD). Yeast isolation and characterization were carried out based on microscopical features and biochemical properties. DNA analysis at the internal transcribed spacer I of 26S rDNA region was utilized for species confirmation. Four species of yeast consisting Malassezia pachydermatis, Malassezia furfur, Candida parapsilosis and Candida tropicalis recovered from examined dogs. M. pachydermatis and C. parapsilosis were isolated from all dogs, but C. tropicalis and M. furfur were recovered from 3 healthy dogs and one diseased dog, respectively. The number of M. pachydermatis and C. parapsilosis in diseased dogs was higher than that of healthy specimens (P<0.01). High frequency and population size of C. parapsilosis were closely associated to PSD, while those of M. pachydermatis were associated with both PSD and SSD (P<0.01). C. parapsilosis were predominant at the perianal area. This study demonstrated the co-colonization of M. pachydermatis and C. parapsilosis in large amounts and frequency associated with stage of disease and anatomical site.  相似文献   

15.
Quantitative and semiquantitative cultural techniques were used to study skin and mucosal carriage of Malassezia pachydermatis in 20 healthy mixed-breed dogs, 13 healthy Basset Hounds and 33 seborrhoeic Basset Hounds. The frequencies of isolation and population sizes from the axilla, nose, mouth and vulva were significantly greater ( P  < 0.01) in both groups of Basset Hounds when compared with the healthy mixed-breed dogs. Population sizes in the seborrhoeic Basset Hounds exceeded those of the healthy bassets at the nose ( P  < 0.05), vulva ( P  < 0.01) and axilla ( P  < 0.001). However, the frequencies of isolation and population sizes of the yeast from the anus were comparable in the three groups of dogs. The relatively high skin and mucosal populations in healthy Basset Hounds may explain, in part, the predisposition to ' Malassezia dermatitis' in this breed. However, the factors which enable the yeast to establish such high populations in Basset Hounds remain unclear.  相似文献   

16.
Cytological examination using the tape-strip technique and fungal culture using contact plates with modified Dixon's medium were compared to evaluate the carriage of Malassezia yeasts on four cutaneous sites (left pinna, umbilical region, axilla and perianal area) in adult Basset Hounds. Twenty animals were included in the study. High numbers of Malassezia were isolated from at least one area in 100% of the animals. The frequencies of isolation and population sizes differed significantly according to anatomical location. They were greater on the pinna, followed by the umbilical area, axilla and perianal area. Fungal culture was more sensitive than cytology for the isolation of Malassezia yeasts. Frequencies of isolation were greater using this method, but population sizes were constantly smaller than with cytology.  相似文献   

17.
Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epidermal surface or hair follicles. The skin can be a portal of entry for fungal infection when the epithelial barrier is breached or it can be a site for disseminated, systemic fungal disease. The two most common cutaneous fungal infections in small animals are dermatophytosis and Malassezia dermatitis. Dermatophytosis is a superficial cutaneous infection with one or more of the fungal species in the keratinophilic genera Microsporum, Trichophyton, or Epidermophyton. Malassezia pachydermatis is a nonlipid dependent fungal species that is a normal commensal inhabitant of the skin and external ear canal in dogs and cats. Malassezia pachydermatis is the most common cause of Malassezia dermatitis. The diagnosis and treatment of these cutaneous fungal infections will be discussed.  相似文献   

18.
Abstract We have previously shown that both atopic and normal dogs generate an IgG response to antigens of Malassezia pachydermatis . The aim of this study was to compare IgE responses to separated proteins of M. pachydermatis in 28 atopic dogs with Malassezia dermatitis and 22 clinically normal dogs using Western immunoblotting. Six different detection systems were evaluated in order to assess sensitivity and eliminate nonspecific binding and cross-reactivity. The protocol yielding the best results utilized a monoclonal mouse antidog IgE, an alkaline phosphatase conjugated goat antimouse IgG which had been passed through a canine IgG column 3 times, a chemiluminescent substrate and a digital imaging system. Proteins of 45, 52, 56 and 63 kDa were recognized by more than 50% of the atopic dog sera and thus represented major allergens. Only a minority of normal dogs showed faint IgE binding to these proteins. The results indicate that the majority of atopic dogs with Malassezia dermatitis have a greater IgE response than normal dogs, suggesting an IgE-mediated immune response may be clinically important in the pathogenesis of the disease.  相似文献   

19.
Hair and hair follicle carriage of Malassezia pachydermatis was studied in 12 healthy beagle dogs. The yeast was isolated from hair clipped from the lip region at 13 sites in nine dogs but was less frequently recovered from the interdigital spaces on the forefeet and from two sites on the trunk. Population sizes at the lip were significantly greater (P < 0.01) than those at other sites. Skin biopsy specimens were obtained from the same sites and epidermal and follicular tissues dissected following immersion in 1 M CaBr(2). Epidermal carriage of M. pachydermatis was identified in nine biopsy specimens taken from five dogs. Hair follicle carriage was identified in five skin specimens (four foot, one lip) from three dogs. This study indicates that M. pachydermatis is readily recovered from the distal hair in healthy dogs and that hair follicle carriage is infrequent or that populations are low at that site.  相似文献   

20.
Lipid-dependent Malassezia species have recently been cultured from veterinary specimens. The identification of Malassezia species isolates from animals is important to clarify the epidemiology of these lipophilic yeasts. Malassezia species were cultured from the external ear canals of 63 out of 99 cats with otitis and 12 of 52 (23%) healthy control cats. The rate of isolation in affected animals versus controls was highly significant (P<0.01). Malassezia pachydermatis was isolated as a pure culture in 33 (45.2%) cats, associated with Malassezia globosa and Malassezia furfur in 20 (50%) and 17 (42.5%) animals, respectively. Three different species were isolated simultaneously in three cats (two cats with M pachydermatis, M globosa and M furfur, one subject with M pachydermatis, M furfur and Malassezia sympodialis). M globosa was isolated as the sole species in two animals. The present work confirms the presence of some lipid-dependent species of Malassezia in both healthy and otitic cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号