首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Ethiopia,Cupressus lusitanica and Juniperus procera are important tree species.The incidence of the cypress aphid,Cinara cupressi,which has not been reported before on the exotic Cupressus lusitanica is becoming catastrophic.The appearance of the insect was reported for the first time in 2003 in Ethiopia.However,information is scarce on the status of this species in northeast Amhara state.The objectives of this study were to assess the extent of damage,abundance and status of the cypress aphid on C.lusitanica and J.procera in the protected and cultivated forests of South Wollo,Ethiopia.Results reveal that tree compositions of the three study areas differed.The dominant tree species were C.lucitanica(15–80%),Olea europaea(5–90%)and J.procera(14–70%).The cypress aphid showed significantly higher levels of infestation on C.lusitanica(35–90%)than on J.procera(1–16%).Moreover,there was higher C.lusitanica mortality(40–93%).In contrast,there was low infestation(1–16%)on J.procera and no mortality.The results reveal that the cypress aphid causes enormous losses of C.lusitanica.Therefore,it is recommended that insect surveillance be strengthened and the introduction bioagents be considered and integrated with other insecticides to minimize the degree of C.lusitanica infestation and loss.  相似文献   

2.
在全球气候总体变暖的大背景下,我国北方地区冬春季气候异常波动现象频繁发生,常常导致园林树木生长异常,主要表现为边缘树种树木春季发芽推迟、枯黄及死亡。由于东北地区的乡土树种在本地区经历了长期的演化过程,与边缘树种相比,对气候的异常变化适应性较强。东北地区城市绿化应大力推广应用椴树、蒙古栎、色木槭、朝鲜槐等乡土树种。    相似文献   

3.
The lack of objective tree species lists hinders the assessment of climate change effects on tree species distributions. The goal of this study was to develop and evaluate criteria for selecting tree species used in large-scale tree migration monitoring efforts. The results of this study indicate that tree migration conclusions are highly dependant on the species selected for examination. It was found that tree species’ median latitudes or forecasted future areas provided objective criteria for development of species lists for migration hypothesis testing with the latter being insensitive to simulation error. Furthermore, only 10–15 of the top species, in terms of high median latitudes or loss in forecasted future area, are needed to maximize the sensitivity of a migration index. The use of such criteria in this study indicated a northward shift of sensitive tree populations of 27 km. It is suggested that examining species only the most likely to migrate serves as an objective starting point for migration detection. In contrast, the inclusion of all tree species commonly observed in large-scale forest inventories can obfuscate migration detection with tree species that have little ecological reason to immediately migrate in a changing climate.  相似文献   

4.
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ipspini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2 million km2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species’ ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time.  相似文献   

5.
ABSTRACT

Climate change affects plant phenology, spatial distribution, and even extinction of vulnerable species. Dipterocarpus turbinatus, locally known as garjan, is a valuable but vulnerable native tree species of Bangladesh whose spatial distribution under future climate change scenarios is not fully understood. The aim of this study was to examine the effects of present and future climatic scenarios on spatiotemporal distribution of D. turbinatus. We used maximum entropy species distribution modeling to perform the present and future habitat suitability of garjan under different climate scenarios. The representative concentration pathways (RCP) 2.6 and 8.5 were considered for bioclimatic variables from the Global Climate Model – Hadley Global Environment Model 2 Atmosphere-Ocean. The predictive accuracy of the model was more than 97% in both the training and test data. The prediction results suggest that compared to present areas (7624 km2) under moderate habitat class it will be 2755 km2 and 1239 km2, respectively, in 2050 and 2070 under RCP2.6 scenario and decreases more rapidly under RCP8.5 scenario. Besides, the prediction also indicates that the habitat of the species will shift toward the high altitudinal south-eastern corner of the country whereas local extinction might occur in the north-eastern part during 2070.  相似文献   

6.
We evaluated the economic effects of a predicted shift from Norway spruce (Picea abies (Karst) to European beech (Fagus sylvatica (L) for a forest area of 1.3 million ha in southwest Germany. The shift was modelled with a generalised linear model (GLM) by using presence/absence data from the National Forest Inventory in Baden-Württemberg, a digital elevation model, and regionalised climate parameters from the period 1970 to 2000. Two scenarios from the International Panel on Climate Change (IPCC) (B1, A2) for three different time scales (2030, 2065, and 2100) were investigated. The GLM predicted a decrease of the suitable area for growing Norway spruce between 21% (B1, 2030) and 93% (A2, 2100) in comparison to 2000. This corresponds to a reduction in the potential area of Norway spruce from between 190,000 and 860,000 ha. The financial effect of this reduction in area was then evaluated by using a classical Faustmann approach, namely the land expectation value (LEV) as an economic parameter for forests of Norway spruce versus European beech. Underlying cash flows were derived from a distance dependent, single-tree growth simulator (SILVA) based on data for prices and costs of the year 2004. With an interest rate of r = 2%, the predicted loss in the potential area of Norway spruce is related to a decrease of the LEV between 690 million and 3.1 billion Euro. We discuss the sensitivity of these results to changing interest rates, risk levels, and rotation lengths. Results suggest that managing forestland for profitability will be increasingly difficult under both climate scenarios.  相似文献   

7.
Juniperus thurifera L.is an endemic Cupres saceae from the Aure`s Mountains of north eastern Algeria and endangered,in part,due to the scarcity of viable seeds It is threatened by other abiotic factors and the lack of an effective management strategy will increase its risk o extinction.The dearth of information on its in vitro regeneration impedes its application in forest managemen programs.We therefore developed a micropropagation protocol using microcuttings with auxiliary buds.Cuttings were grown on different combinations of media supplemented with plant growth regulators at different concentrations.The highest number of shoots and branches regenerated from original shoots was obtained on Woody Plant Medium(WPM)supplemented with 6-benzylaminopurine(BAP)(0.5 mg L-1)and 2,4-dichlorophe noxyacetic acid(2,4-D)(0.25 mg L-1).The best elongation of shoots was achieved with WPM supplemented with0.5 mg L-1of BAP and 0.25 or 1 mg L-1 of 2,4-D.On the second subculture,shoots had a higher number of branches than those of the first.The highest rooting rate,38.8%,was obtained with shoots cultured in 1/2 Murashige and Skoog(MS)medium supplemented with 5.0 mg L-1each of indol-3-butyric(IBA)and naphthalene acetic acid(NAA).Similarly,the highest root numbers and lengths were produced on 1/2 MS medium supplemented with IBA and NAA(5.0 mg L-1each).During transfer to acclimatization,rates of plant losses of 50% occurred.The second part of the experiment showed that the best shoot callusing was on WPM supplemented with BAP and 2,4-D,with either the combination 0.5+0.25 or 0.25+0.25 mg L-1.The results of this research provide a starting point for further studies on in vitro regeneration of J.thurifera for the sustainable management of its unique ecosystem in the Mediterranean basin.  相似文献   

8.
Species distribution models (SDMs) to evaluate trees’ potential responses to climate change are essential for developing appropriate forest management strategies. However, there is a great need to better understand these models’ limitations and evaluate their uncertainties. We have previously developed statistical models of suitable habitat, based on both species’ range and abundance, to better understand potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed.us/atlas). Our focus here is to build on these results via a more robust assessment framework called modification factors (ModFacs) that is made up of five components. ModFac 1 addresses nine biological characteristics (e.g., shade tolerance and seedling establishment) that quantify the influence of species life-history traits. ModFac 2 considers 12 disturbance characteristics (e.g., insect pests, drought, and fire topkill) which address the capacity of a species to tolerate and respond to climate-induced changes in habitat. ModFac 3-5 distill the tree SDM results and facilitate communication of model uncertainty; we quantified the variability in projected change for General Circulation Models (GCM) and emissions scenarios (ModFac 3), the extent to which each species’ habitat intersects novel climate conditions (ModFac4), and accounted for long-distance extrapolations beyond a species’ current range (ModFac5). The life-history components of ModFacs 1 and 2 demonstrate the marked variability among species in terms of biological and disturbance characteristics, suggesting diverse abilities to adapt to climate change. ModFacs 3-5 show that the information from the SDMs can be enhanced by quantifying the variability associated with specific GCM/emission scenarios, the emergence of novel climates for particular tree species, and the distances of species habitat shifts with climate change. The ModFacs framework has high interpretive value when considered in conjunction with the outputs of species habitat models for this century. Importantly, the intention of this assessment was not to create a static scoring system, but to broadly assess species characteristics that likely will play an important role in adaptation to climate change. We believe these scores based on biological, disturbance, and model synthesis factors provide an important expansion of interpretive and practical value to habitat model projections.  相似文献   

9.
Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.  相似文献   

10.
Mapping forest dynamics under climate change: A matrix model   总被引:1,自引:0,他引:1  
Global climate change may be affecting forests around the world. However, the impact of climate change on forest population dynamics, especially at the landscape or regional level, has hardly been addressed before. A new methodology was proposed to enable matrix transition models to account for climate impact on forest population dynamics. The first climate-sensitive matrix (CSMatrix) model was developed for the Alaska boreal forest based on observations from over 15 years of forest inventory. The spatially explicit model was used to map climate-induced forest population dynamics across the region. The model predicted that the basal area increment in the region under natural succession would be hindered by global warming, more so for dry upland areas than for moist wetlands. It was suggested that temperature-induced drought stress could more than offset a predicted increase of future precipitation in the region to lower overall forest productivity. At the same time, stand diversity would increase across the region through transient species redistribution. Accounting for climate conditions made the CSMatrix model more accurate than conventional matrix models.  相似文献   

11.
The larch (Larix) genus is the most important species group in the forest ecosystems in Northeastern China, occupying about 25% of the forest areas. The high tolerance to coldness and relatively fast growth rate make this genus the main species group for forestation. According to the predictions of the global circulation model CGCM3, temperature could rise by 2–4 °C over the next 100 years. Few studies have been conducted on the response of larch species to climate warming in Northeastern China. Such studies are becoming increasingly needed due to the economic and ecological significance of this genus. This paper studies the potential distribution ranges of three larch species under the current and the warming climate conditions. A new classification and regression tree technique, Random Forest, was used to investigate the potential distributions of three larch species, based on 18 environmental variables which reflect the climate, topography and soil conditions of Northeastern China. The results showed that the biological coldness index (BCI) is the most important factor for Dahurian larch, annual precipitation (AP) is the most important factor for Korean larch and elevation (DEM) is the most important factor for Prince Rupprecht larch.  相似文献   

12.
GENERALCoNDlTloNABoUTCLI-MATECHANGEINHElLoNGJIANGPRoVINCEDtlrlngthepasscdll)()}ears(l88l-l`)8(j)ors().tllctcndenc}'ofmcanairtc111pcraturcincrcasct\ithfluctuationcl11ergcdin\ariousrcglonsofHcllonViangproxincc.Airtcmpcra-turcinl98()s-rcachcdtl1emaxil11un1uithinthcpasscdll)()y'cars.Thisphcl1ol11enonaccordcd``iththctcndenc}'ofglobalclil11ate\"ar1ni11g.Thel11eanairtc111peralurcil1tl1creccl1tl()}car(l()8()-l()8`))incrcascdb}l).6"Cascom-pal-cd\`ltl1tl1atll1tl1clbrl11er3())'carsacc…  相似文献   

13.
IntroductionItissurethatpresentelevatiollsofCO2a11dotllergrcc11-housegasesinducedbyhumanactivitiesaren1akli1gglobalclimategothroughinexperielICedcl1anges(Scl1le-subgerl987).Thecurrentquasi-equilibriulllstatesofbio-sphereecosystCm,esPeciallyterrestrialecosystems,wouldbebrokenbecausetl1estructure,fu11ction,distributio11andtlledynamicsofanyexistedecosystemsareIberesultsoflongtermadaptationofbio-systemtocurrentclin1ate.Theec()systemsdistributedinhighlatitlldeareawouldhavemuchbiggerchai1ge(Bona…  相似文献   

14.
Based on the tree-ring growth characteristics of Erman's birch (Betula ermanii charm.) and the relationships between it and climatic )'actors at elevation of 1950m, the sensitivity of tree lines in Changbai Mountain to climatic factors was assessed. The results indicated tree line forest in Changbai Mountain had an obvious sensitivity to climate factors. However, difference from other study sits is that the main climatic control factor on tree-ring growth was not current growth season temperatures, as might be expected, but previous winter and current March temperature. Although the precipitation in the region was quite abundant, the tree-ring growth was still significantly correlated with the precipitation during previous winter and current spring. Additionally, climatic factors which influenced the Erman's birch growth were not the yearly variables, but seasonal and monthly variables. Therefore, the reported increase in yearly mean temperature and total yearly precipitation since 1980s was not responded by sustained increase in ring widths in recent decades.  相似文献   

15.
We modeled and mapped, using the predictive data mining tool Random Forests, 134 tree species from the eastern United States for potential response to several scenarios of climate change. Each species was modeled individually to show current and potential future habitats according to two emission scenarios (high emissions on current trajectory and reasonable conservation of energy implemented) and three climate models: the Parallel Climate Model, the Hadley CM3 model, and the Geophysical Fluid Dynamics Laboratory model. Since we model potential suitable habitats of species, our results should not be interpreted as actual changes in ranges of the species. We also evaluated both emission scenarios under an “average” future climate from all three models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. Of the 134 species, approximately 66 species would gain and 54 species would lose at least 10% of their suitable habitat under climate change. A lower emission pathway would result in lower numbers of both losers and gainers. When the mean centers, i.e. center of gravity, of current and potential future habitat are evaluated, most of the species habitat moves generally northeast, up to 800 km in the hottest scenario and highest emissions trajectory. The models suggest a retreat of the spruce-fir zone and an advance of the southern oaks and pines. In any case, our results show that species will have a lot less pressure to move their suitable habitats if we follow the path of lower emissions of greenhouse gases. The information contained in this paper, and much more, is detailed on our website: http://www.nrs.fs.fed.us/atlas.  相似文献   

16.
Phaeocryptopus gaeumannii, the causal agent of Swiss needle cast, is widely distributed in plantations of Douglas-fir (Pseudotsuga menziesii) throughout New Zealand, causing premature abscission of needles and significant growth losses. Data were collected from 34 sites, selected to span a broad range of environmental conditions within New Zealand, to (i) develop models of infection and foliage retention, Fret, and (ii) from these models predict Fret by region under current and future climates, using the factorial combination of 12 Global Climate Models (GCMs) and three emission scenarios (low, B1; medium, A1B; and high, A2).  相似文献   

17.
The threat of climate change is now recognized as an imminent issue at the forefront of the forest sector. Incorporating adaptation to climate change into forest management will be vital in the continual and sustainable provision of forest ecosystem services. The objective of this study is to investigate climate change adaptation in forest management using the landscape disturbance model LANDIS-II. The study area was comprised of 14,000 ha of forested watersheds in central Nova Scotia, Canada, managed by Halifax Water, the municipal water utility. Simulated climate change adaptation was directed towards three components of timber harvesting: the canopy-opening size of harvests, the age of harvested trees within a stand, and the species composition of harvested trees within a stand. These three adaptation treatments were simulated singly and in combination with each other in the modeling experiment. The timber supply was found to benefit from climate change in the absence of any adaptation treatment, though there was a loss of target tree species and old growth forest. In the age treatment, all trees in a harvested stand at or below the age of sexual maturity were exempt from harvesting. This was done to promote more-rapid succession to climax forest communities typical of the study area. It was the most effective in maintaining the timber supply, but least effective in promoting resistance to climate change at the prescribed harvest intensity. In the composition treatment, individual tree species were selected for harvest based on their response to climate change in previous research and on management values at Halifax Water to progressively facilitate forest transition under the altered climate. This proved the most effective treatment for maximizing forest age and old-growth area and for promoting stands composed of climatically suited target species. The size treatment was aimed towards building stand complexity and resilience to climate change, and was the most influential treatment on the response of timber supply, forest age, and forest composition to timber harvest when it was combined with other treatments. The combination of all three adaptation treatments yielded an adequate representation of target species and old forest without overly diminishing the timber supply, and was therefore the most effective in minimizing the trade-offs between management values and objectives. These findings support a diverse and multi-faceted approach to climate change adaptation.  相似文献   

18.
Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (temperature, precipitation, drought, wind etc.). Available information is not sufficient to support a quantitative assessment of the ecological, social and economic consequences. The present study assessed shifts in forest cover types of Western Himalayan Eco-region (700?4500 m). 100 randomly selected samples (75 for training and 25 for testing the model), genetic algorithm of rule set parameters and climatic envelopes were used to assess the distribution of five prominent forest cover types (Temperate evergreen, Tropical semi-evergreen, Temperate conifer, Subtropical conifer, and Tropical moist deciduous forests). Modelling was conducted for four different scenarios, current scenario, changed precipitation (8% increase), changed temperature (1.07°C increase), and both changed temperature and precipitation. On increasing precipitation a downward shift in the temperate evergreen and tropical semi-evergreen was observed, while sub-tropical conifer and tropical moist-deciduous forests showed a slight upward shift and temperate conifer showed no shift. On increasing temperature, an upward shift in all forest types was observed except sub-tropical conifer forests without significant changes. When both temperature and precipitation were changed, the actual distribution was maintained and slight upward shift was observed in all the forest types except sub-tropical conifer. It is important to understand the likely impacts of the projected climate change on the forest ecosystems, so that better management and conservation strategies can be adopted for the biodiversity and forest dependent community. Knowledge of impact mechanisms also enables identification and mitigation of some of the conditions that increase vulnerability to climate change in the forest sector.  相似文献   

19.
Review of literature indicates that many uncertainties and assumptions exist in predicting the impacts of a climate change on forest ecosystems. However, current knowledge is sufficient to encourage any measures that are combating climate change, that is to reduce first and foremost the release of harmful substances to the atmosphere, lithosphere and biosphere.  相似文献   

20.
Effective adaptation of forest management practices to climate change will require a good understanding of the ecological and climatic factors influencing tree sensitivities and responses to climate. Using tree-ring data collected from 33 stands of mature interior Douglas-fir (Pseudotsuga menziesii var. glauca) spanning a wide climatic range in British Columbia (BC), Canada, we present an approach combining high-resolution spatiotemporal climate data with traditional dendroecological analyses to quantify relationships between population climate-growth sensitivity and provenance (i.e., seed-source origin) climate. Key results showed that Douglas-fir climate-growth sensitivities were strongly linked to provenance climate and varied in coherent patterns across climatic gradients. Climate-growth sensitivities and responses were sometimes opposite between provenances from disparate climates. Perhaps most importantly, our results showed that Douglas-fir productivity across most of its range was sensitive to moisture limitations, and this sensitivity increased strongly with decreasing provenance mean annual precipitation and increasing heat-moisture index. Using geographic information systems, we visualize the link between provenance mean annual precipitation and climatic sensitivity of Douglas-fir across BC to identify “high risk” populations. By understanding the link between biological responses and climate, forest managers may be able to spatially identify sensitive populations using spatiotemporal climate data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号