首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the origin, evolution and weathering of Pampean soils is still limited. There are few prior studies of silicophytoliths, even though they could be important pedogenetic indicators that provide information about the role of amorphous silica in the reestablishment of soil structure. The aim of this work is to determine the silicophytolith content in Typical Argiudolls of the Pampean Plain, Argentina, its relation with vegetal cover and its effect on pedogenesis. We worked in three plots with different vegetal cover: grasses and shelter-belt plantations of Acacia melanoxylonCeltis tala and Eucalyptus globulusCeltis tala. In the study area, morphological characterization and particle size distribution analysis of soils were completed, and pH and organic matter content were determined. The heavy liquid separation was realized with sodium polytungstate (δ = 2.3 g/cm3) and an average of around 500 mineral grains were counted under optical microscope for the quali-quantitative analysis. There were no differences between profiles with respect to their morphological properties, organic matter content and particle size distribution, except for the higher organic horizon development of the forest plots as compared with the grass plot. The silicophytolith content was higher in the forest plots than in the grass one; within each profile, this fraction content decreased from the surface (63–40%) to the subsurface levels (23–5%) of soils. This decrease parallels the pieces of amorphous silica (< 7.5 μm) distribution in all plots analyzed. Afforestation over the past 50 years does not affect either the morphological or the physico-chemical properties of soils. These forest species, through the organic horizons, preserve soil conditions, which insures a higher representativity of silicophytoliths in comparison with the grass plot.  相似文献   

2.
含岩屑紫色土水分扩散规律   总被引:1,自引:0,他引:1       下载免费PDF全文
紫色土中存在的岩屑显著影响土壤水分扩散。以往研究主要集中在> 2 mm岩屑上而忽视了<2 mm岩屑的作用。因此,探讨>2 mm岩屑对紫色土水分扩散的影响基础上,明确<2 mm岩屑的作用对完善含岩屑紫色土水分扩散规律的研究具有重要的意义,从而为土壤水动力学模型的构建提供理论依据。以四川盆地紫色页岩发育的暗棕紫泥土和泥岩发育的红棕紫泥土为研究对象,设置3种岩屑粒径(0.25~2,2~5,5~10 mm)和4种岩屑含量(0,30%,50%,70%),利用水平土柱吸渗法测定含岩屑土壤湿润锋变化特征、水分扩散率D(θ)和土壤含水率θ,并拟合D(θ)、Boltzmann参数λ与θ之间的关系。结果表明:对于暗棕紫泥土,岩屑粒径为2~5 mm时,土壤湿润锋前进速率和D(θ)随岩屑含量增加呈先增加后降低再增加的趋势;岩屑粒径为0.25~2,5~10 mm时,土壤湿润锋前进速率和D(θ)随岩屑含量增加逐渐增加。对于红棕紫泥土,岩屑粒径为2~5,5~10 mm,随岩屑含量增加,70%岩屑含量的土壤D(θ)明显大于其余3个岩屑含量的土壤,而30%岩屑含量和50%岩屑含量土壤之间的D(θ)无显著差异,且土壤湿润锋前进速率均呈先增加后降低再增加的趋势;岩屑粒径为0.25~2 mm时,土壤湿润锋前进速率和D(θ)随岩屑含量增加逐渐增加。因此,随岩屑含量提高,土壤水分扩散速率整体呈现增加趋势;且泥岩发育的土壤水分扩散速率高于页岩发育的土壤。  相似文献   

3.
The magnetic properties and magnetic mineralogy of a weathering sequence of soils developed on basalt parent material from eastern China, were studied by rock magnetism, X-ray diffraction and soil chemical analyses to establish the connection between mineral magnetic properties and pedogenic development in a subtropical region. The magnetic susceptibility of soils formed on basalt varied greatly and did not increase with the degree of pedogenic development. The frequency-dependent susceptibility (χfd) values of soils ranged from 1.0 to 11.1% and increased with the pedogenic development. Highly significant linear relationship was found between the frequency-dependent susceptibility and the Fed content (R2 = 0.683) and Fed/Fet ratio (R2 = 0.780) in soils, indicating that pedogenic SP ferrimagnetic grains were associated with enrichment of the secondary iron oxide minerals in the weathering process of soil. Rock magnetism analysis showed that the major magnetic carriers in the weakly weathered soil profiles are magnetite and/or maghemite, and the highly developed soil profiles are generally enriched in magnetite/maghemite grains of pedogenic origin and the magnetically hard haematite, indicating that the magnetic component was transformed from a ferrimagnetic phase (magnetite) to antiferromagnetic phase (hematite) during pedogenic development. Results indicated that some of the magnetic parameters of soils, in this case χfd, can be useful for pedogenic comparisons and age correlations in the weathering sequence of soil. It is thus suggested that multiparameter rock magnetic investigations represent a more powerful approach for pedogenesis.  相似文献   

4.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

5.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

6.
More than 200,000 ha of short rotation Eucalyptus globulus plantations have been established in south-western Australia to supply wood for the pulp and paper industries. Sustaining the productivity of these tree crops over successive rotations will depend in part on maintenance of soil fertility, especially soil nitrogen (N) supply. We investigated the impact of four alternative strategies for management of harvest residues on soil N dynamics in recently logged first rotation plantations. The experiments were conducted over 5 years following harvesting at two sites with contrasting soils—a coarse textured grey sand over laterite (Podzol) with low natural fertility and a relatively fertile red earth soil (Ferralsol). At the grey sand site, 31 t ha−1 of residues containing 219 kg N ha−1 were deposited following harvest while at the red earth site the equivalent figures were 51 t ha−1 of residues and 347 kg N ha−1. Experimental treatments applied included residues burned, removed, retained and retained with double the amount of residues. The impact of treatments on soil nitrogen supply was investigated by incubating intact soil cores in the field to determine rates of net N mineralization. Additionally, the effect of treatments on soil moisture and temperature, the resident pool of soil mineral N and the amount of N potentially available for mineralization was assessed. The mulching effect of retained residues resulted in higher soil moisture where residues had been retained and a trend for soil on these treatments to dry out more slowly with the onset of the dry summer season, especially in the first year following harvest. Diurnal variations in soil temperature were moderated and average soil temperatures were reduced during summer where residues were retained. Concentrations of mineral N in soil were high in the 2 years following harvest at both sites and declined as newly established seedlings developed. At the more fertile site, where mineral N occurred predominantly as nitrate, retention of residues resulted in lower pools of soil mineral N following harvest. The effect of residue treatments on soil mineral N pools was less marked at the grey sand site. Concentrations of potentially mineralizable soil N and the amounts of N mineralized annually were greater where residues were retained at both sites. The results indicate that retention of harvest residues will favour the conservation of N following logging. However, accumulation of soil mineral N following harvesting due to reduced plant uptake will result in leaching of N early in the rotation that is largely independent of residue management. Retaining harvest residues will contribute to enhanced N supply for the next tree crop through mineralization in the long term. However, on some sites, additions of nitrogenous fertilizers will still be required to maximise the rate of tree growth.  相似文献   

7.
High mountain ecosystems are generally considered to be particularly sensitive to global climate change. Studies of pedogenesis associated with altitudinal variation, vegetation type and soil carbon content on the same type of parent rock are very limited in inter-tropical mountain areas. Therefore the altitudinal variation of soil pedogenesis through 9 selected profiles from the altitude of 1340 m to 3143 m asl, the summit of the Fan Si Pan Mountain, in the north of Vietnam was examined. Fan Si Pan Mountain is composed of a homogenous alkaline granite rock and is the highest point of the Inter-tropical Continental Asia. The Soil Organic Matter properties (C, N, δ13C and δ15N contents) of the different grain-size fractions of the topsoil of 4 selected profiles corresponding to different ecosystems were also examined.  相似文献   

8.
Low molecular weight organic acids such as citrate and oxalate have been hypothesized to play a key role in rhizosphere ecology and pedogenesis. A mathematical site-specific model, DYNLOW, was constructed to describe the temporal and spatial dynamics of these organic acids in coniferous forest soils using the modelling software STELLA®. Experimentally derived values for biodegradation, adsorption, and daily values of soil temperature, moisture and hydrological flow were used to parameterize the model. The model describes the dynamics and downward movement of oxalate and citrate through the horizons (O, AE, E, Bhs, Bs) of three podzolic soil profiles in Sweden. After calibration, the model predicted average soil solution organic acid concentrations ranging from <1 to 90 μM, which was in agreement with experimental measurements (<1 to 116 μM). The model results indicated that microbial degradation of organic acids was in quantitative terms the biggest process regulating soil solution concentrations. Primary production rates of organic acid in the soil were predicted to be high (<1 to 1250 nmol g−1 soil d−1) in comparison to the amount present at steady state in the soil solution pool (<0.1 to 240 nmol g−1 soil). The downward transfer of organic acids between soil horizons due to mass flow was predicted to be a small flux (<0.1 to 3% of the total loss) compared to that lost by microbial biodegradation. The model predicted that the amount of basal soil respiration that could be attributable to the microbial turnover of organic acids was on average 19±22% of the basal CO2 production across all sites and horizons for citrate and 7±7% for oxalate. The model results are discussed in the context of pedogenesis, forest soil respiration and organic matter production.  相似文献   

9.
Earthworms are known to be important regulators of soil structure and soil organic matter (SOM) dynamics, however, quantifying their influence on carbon (C) and nitrogen (N) stabilization in agroecosystems remains a pertinent task. We manipulated population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional (i.e., mineral fertilizer), organic (i.e., composted manure and legume cover crop), and an intermediate low-input system (i.e., alternating years of legume cover crop and mineral fertilizer)] to examine their influence on C and N incorporation into soil aggregates. Two treatments, no-earthworm versus the addition of five A. rosea adults, were established in paired microcosms using electro-shocking. A 13C and 15N labeled cover crop was incorporated into the soil of the organic and low-input systems, while 15N mineral fertilizer was applied in the conventional system. Soil samples were collected during the growing season and wet-sieved to obtain three aggregate size classes: macroaggregates (>250 μm), microaggregates (53-250 μm) and silt and clay fraction (<53 μm). Macroaggregates were further separated into coarse particulate organic matter (cPOM), microaggregates and the silt and clay fraction. Total C, 13C, total N and 15N were measured for all fractions and the bulk soil. Significant earthworm influences were restricted to the low-input and conventional systems on the final sampling date. In the low-input system, earthworms increased the incorporation of new C into microaggregates within macroaggregates by 35% (2.8 g m−2 increase; P=0.03), compared to the no-earthworm treatment. Within this same cropping system, earthworms increased new N in the cPOM and the silt and clay fractions within macroaggregates, by 49% (0.21 g m−2; P<0.01) and 38% (0.19 g m−2; P=0.02), respectively. In the conventional system, earthworms appeared to decrease the incorporation of new N into free microaggregates and macroaggregates by 49% (1.38 g m−2; P=0.04) and 41% (0.51 g m−2; P=0.057), respectively. These results indicate that earthworms can play an important role in C and N dynamics and that agroecosystem management greatly influences the magnitude and direction of their effect.  相似文献   

10.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

11.
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio.  相似文献   

12.
A long-term field experiment was conducted to examine the influence of mineral fertilizer and organic manure on the equilibrium dynamics of soil organic C in an intensively cultivated fluvo-aquic soil in the Fengqiu State Key Agro-Ecological Experimental Station (Fengqiu county, Henan province, China) since September 1989. Soil CO2 flux was measured during the maize and wheat growing seasons in 2002-2003 and 2004 to evaluate the response of soil respiration to additions and/or alterations in mineral fertilizer, organic manure and various environmental factors. The study included seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (NOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Organic C in soil and the soil heavy fraction (organo-mineral complex) was increased from 4.47 to 8.61 mg C g−1 and from 3.32 to 5.68 mg C g−1, respectively, after the 13 yr application of organic manure. In contrast, organic C and the soil heavy fraction increased in NPK soil to only 5.41 and 4.38 mg C g−1, respectively. In the CK treatment, these parameters actually decreased from the initial C concentrations (4.47 and 3.32 mg C g−1) to 3.77 and 3.11 mg C g−1, respectively. Therefore, organic manure efficiently elevated soil organic C. However, only 66% of the increased soil organic C was combined with clay minerals in the OM treatment. Cumulative soil CO2 emissions from inter-row soil in the OM and NPK treatments were 228 and 188 g C m−2 during the 2002 maize growing season, 132 and 123 g C m−2 during the 2002/2003 wheat growing season, and 401 and 346 g C m−2 yr−1 in 2002-2003, respectively. However, during the 2004 maize growing season, cumulative soil CO2 emissions were as high as 617 and 556 g C m−2, respectively, due to the contribution of rhizosphere respiration. The addition of organic manure contributed to a 16% increase in soil CO2 emission in 2002-2003 (compared to NPK), where only 27%, 36% and 24% of applied organic C was released as CO2 during the 2002 and 2004 maize growing seasons and in 2002-2003, respectively. During the 2002/2003 wheat growing season, soil CO2 flux was significantly affected by soil temperature below 20 °C, but by soil moisture (WFPS) during the 2004 maize growing season at soil temperatures above 18 °C. Optimum soil WFPS for soil CO2 flux was approximately 70%. When WFPS was below 50%, it no longer had a significant impact on soil CO2 flux during the 2002 maize growing season. This study indicates the application of organic manure composted with wheat straw may be a preferred strategy for increasing soil organic C and sequestering C in soil.  相似文献   

13.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

14.
Soil microbial biomass was analyzed in a rapidly subsiding coastal bottomland forest at three sites along an elevation change of ∼1 m and an associated hydrologic gradient of 400 m from rare (ridge site), to occasional (intermediate site), to frequent flooding (swamp site). Given the current rate of relative sea-level rise in this area (subsidence+global mean sea-level rise ∼1.2 cm y−1), this gradient may represent a space-for-time substitution for about one century of future sea-level rise. Along the hydrologic gradient, microbial biomass carbon (MBC) in the upper 20 cm of mineral soil was 157±26 (ridge), 134±14 (intermediate), and 90±20 (swamp) g C m−2. MBC was positively correlated with soil organic matter (r2=0.76, P=0.002) and the ratio of MBC to soil organic C ranged from 0.008 to 0.017 depending on soil depth and site. Generally, MBC decreased with increasing soil moisture from the ridge to the swamp site. Although MBC was statistically similar overall in the ridge and intermediate sites, the intermediate site had the largest fraction (45%) at 0-5 cm, whereas the ridge site had the largest fraction (40%) below 10-20 cm. Based on a space-for-time substitution model using non-linear regression analysis, we predict that MBC in the upper 20 cm of soil is likely to decrease by about one-third along the transect over the next century as a result of subsidence and sea-level rise.  相似文献   

15.
Clubroot disease of cruciferous plants caused by the soil-borne pathogen Plasmodiophora brassicae is difficult to control because the pathogen survives for a long time in soil as resting spores. Disease-suppressive and conducive soils were found during the long-term experiment on the impact of organic matter application to arable fields and have been studied to clarify the biotic and abiotic factors involved in the disease suppression. The fact that a large amount of organic matter, 400 t ha−1 yr−1 farmyard manure (FYM) or 100 t ha−1 yr−1 food factory sludge compost (FSC), had been incorporated for more than 15 yr in the suppressive soils and these soils showed higher pH and Ca concentration than the disease conducive soil led us to hypothesize that an increase in soil pH due to the long-term incorporation of Ca-rich organic matter might be the primary cause of the disease suppression. We have designed a highly reproducible bioassay system to examine this hypothesis. The suppressive and conducive soils were mixed with the resting spores of P. brassicae at a rate of 106 spore g−1 soil, and Brassica campestris was grown in a growth chamber for 8 d. The number of root hair infections was assessed on a microscope. It was found that the incorporation of FYM and FSC at 2.5% (w/w) to the conducive soil suppressed the infection and that the finer particles (?5 mm) of FSC inhibited the infection and increased soil pH more effectively. Neutralization of the conducive soil by Ca(OH)2, CaCO3 and KOH suppressed the infection, but the effectiveness of KOH was less than those of Ca(OH)2 and CaCO3. Acidification of the suppressive soils by H2SO4, promoted the infection. The involvement of soil biota in the disease suppression was investigated using the sterilized (γ-ray irradiation) suppressive soils with respect to soil pH. The γ-ray irradiation promoted the infection at pH 5.5, but no infection was observed at pH 7.4 irrespective of the sterilization status. All these observations suggest that soil pH is a major factor in disease suppression by organic matter application and that Ca and soil biota play certain roles in the suppression under the influence of soil pH.  相似文献   

16.
The natural 15N abundance (δ15N) of different ecosystem compartments is considered to be an integrator of nitrogen (N) cycle processes. Here we investigate the extent to which patterns of δ15N in grassland plants and soils reflect the effect of different management practices on N cycling processes and N balance. Investigations were conducted in long-term experimental plots of permanent montane meadows with treatments differing in the amount and type of applied fertilizer (0-200 kg N ha−1 yr−1; mineral fertilizer, cattle slurry, stable manure) and/or the cutting frequency (1-6 cuts per season). The higher δ15N values of organic fertilizers compared to mineral fertilizer were reflected by higher δ15N values in soils and harvested plant material. Furthermore, δ15N of top soils and plant material increased with the amount of applied fertilizer N. N balances were calculated from N input (fertilization, atmospheric N deposition and symbiotic N2 fixation) and N output in harvest. ‘Excess N’—the fraction of N input not harvested—was assumed to be lost to the environment or accumulated in soil. Taking fertilizer type into account, strong positive correlations between δ15N of top soils and the N input-output balance were found. In plots receiving mineral N fertilizer this indicates that soil processes which discriminate against 15N (e.g. nitrification, denitrification, ammonia volatilization) were stimulated by the increased supply of readily available N, leading to loss of the 15N depleted compounds and subsequent 15N enrichment of the soils. By contrast, in plots with organic fertilization this correlation was partly due to accumulation of 15N-enriched fertilizer N in top soils and partly due to the occurrence of significant N losses. Cutting frequency appeared to have no direct effect on δ15N patterns. This study for the first time shows that the natural abundance of 15N of agricultural systems does not only reflect the type (organic or mineral fertilizer) or amount of annual fertilizer amendment (0-200 kg ha−1 yr−1) but that plant and soil δ15N is better described by N input-output balances.  相似文献   

17.
Bedrock surfaces in the Ouachita Mountains, Arkansas, exposed by spillway construction and which had not previously been subjected to surface weathering environments, developed 15–20 cm thick soil covers in less than three decades. All open bedrock joints showed evidence of weathering and biological activity. Rock surfaces and fragments also showed evidence of significant weathering alteration. The results suggest a soil production function whereby weathering and increases in thickness are initially rapid. The rapid initial rate (5 to 10 mm year− 1) is facilitated by a weathering-favorable regional climate, local topography favoring moisture and sediment accumulation, and aggressive vegetation colonization. The ages of the trees on the bedrock benches suggests that a short period (< 10 years) of pedogenic site preparation is necessary before trees can become established. Initial chemical weathering within newly-exposed rock fractures in resistant sandstone strata and chemical weathering of weak shale layers, coupled with accumulation of organic and mineral debris in fractures and microtopographic depressions facilitates plant establishment, which accelerates local weathering rates.  相似文献   

18.
Physical protection is one of the most important ways for stabilization of organic carbon (OC) in soils, and in order to properly manage soils as a sink for carbon, it is necessary to know how much OC a given soil could protect. To this end, we studied individual horizons taken from 16 soil profiles under Quercus rotundifolia stands, all over calcareous parent materials. Horizons were subjected to a sequential extraction using solutions of sodium polytungstate (NaPT) of increasing density: (i) NaPT d=1.6, using slight hand agitation, to obtain the free light fraction (FL); (ii) NaPT d=1.6 and ultrasonic dispersion, to obtain the Occluded Fraction I (Ocl I); (iii) NaPT d=1.8, to obtain the Occluded Fraction II (Ocl II); and (iv) NaPT d=2.0, to obtain the Occluded Fraction III (Ocl III). The fraction of density>2.0 are taken as dense fraction (DF). The free organic matter was further divided into FL>50 (retained by a 50 μm mesh: coarse organic fragments) and FL<50 (non-retained: fine organic fragments). The fractions FL>50 and FL<50 were taken together as free organic matter. The rest of the fractions are taken together as protected organic matter. The obtained fractions were analyzed for total OC, total N, and carbohydrate content. The percentage of non-hydrolyzable OC and N in each fraction was taken as an indicator of OC and N recalcitrance, respectively.For both OC and N, the fractions FL>50 and DF are dominant; the rest of the fractions are of much lower quantitative importance. In H horizons and in most A horizons, most of the OC and N are free, whereas in B horizons both OC and N are mostly protected. Overall, the percentages of free OC and N are very high and are currently amongst the highest ever recorded.Organic matter recalcitrance is lowest in the two most protected fractions (Ocl III and especially DF), and highest in the first occluded fractions (Ocl II and especially Ocl I). The free organic matter (FL>50 fraction) has an intermediate quality: it includes recognizable plant fragments, but the indicators tested (recalcitrance, carbohydrate content, cellulose to total carbohydrates ratio) suggest that it is not always the most fresh and non-decomposed fraction.There are clear maxima for both protected OC and N, which can be approached by curve fitting. By exponential fit, the obtained maxima are 84.1 g of OC and 7.7 g of N kg−1 of mineral particles <20 μm. These maxima are much higher than the upper limits obtained by other authors. Differences in the sampling approach are suggested as the reason for such discrepancies.  相似文献   

19.
The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P?0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH4-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n?25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.  相似文献   

20.
Water dispersible clay (WDC) is a good indicator of the risk of soil erosion by water and the consequent losses of nutrients and contaminants in overland flow. We measured the content and studied the properties of WDC in 26 samples of calcareous Xeralfs, Xerepts and Xererts of southwestern Spain collected from fields under different crop and tillage management; the soils ranged widely in total clay content (60–455 g kg− 1), calcium carbonate equivalent (CCE) (< 1–559 g kg− 1) and active calcium carbonate equivalent (ACCE; 2–135 g kg− 1), and were poor in organic carbon and soluble salts. The WDC content was determined by shaking 10 g of soil in 1 L of simulated rainwater for 4 hours. Non-carbonate WDC contents were found to be strongly correlated with the total clay content of the soils and ranged from 1 to 92 g kg− 1 soil (mean = 29 g kg− 1), the non-carbonate WDC/total clay ratio ranging from 0.01 to 0.29 (mean = 0.12). Based on regression analyses, illite was more dispersible than smectite and iron oxides decreased dispersion of clay. Carbonate WDC contents ranged from 1 to 27 g kg− 1 (mean = 8 g kg− 1) and were averaged one third the non-carbonate WDC contents; also, they were strongly correlated with the soil ACCE. WDC was rich in phosphorus (P) relative to the bulk soil. The enrichment ratio (ER) for total P (i.e. the ratio of total P in WDC to total P in soil) ranged from 0.2 to 29 (mean = 5) and was inversely related to the total clay content. On average, about one tenth of the soil total P was exported in the WDC and about one fifth of the total P in WDC was in the form of bicarbonate-extractable P (i.e. relatively soluble or ‘labile’ P). Part of the P in WDC seemingly occurred as metal phosphate particles formed by reaction of P fertilizers with soil. In summary, significant amounts of P can be exported via WDC, even though the proportion of total clay that is water dispersible is substantially lower in these soils than in cultivated soils of other semiarid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号