首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studying on spatial and temporal variation in soil organic carbon (SOC) is of great importance because of global environmental concerns. Tillage-induced soil erosion is one of the major processes affecting the redistribution of SOC in fields. However, few direct measurements have been made to investigate the dynamic process of SOC under intensive tillage in the field. Our objective was to test the potential of 137Cs and 210Pbex for directly assessing SOC redistribution on sloping land as affected by tillage. Fifty plowing operations were conducted over a 5-day period using a donkey-drawn moldboard plow on a steep backslope of the Chinese Loess Plateau. Profile variations of SOC, 137Cs and 210Pbex concentrations were measured in the upper, middle and lower positions of the control plot and the plot plowed 50 times. 137Cs concentration did not show variations in the upper 0–30 cm of soil whereas 210Pbex showed a linear decrease (P < 0.05) with soil depth in the upper and middle positions, and an exponential decrease (P < 0.01) at the lower position of the control plot. The amounts of SOC, 137Cs and 210Pbex of sampling soil profiles increased in the following order: lower > middle > upper positions on the control plot. Intensive tillage resulted in a decrease of SOC amounts by 35% in the upper and by 44% in the middle positions for the soil layers of 0–45 cm, and an increase by 21% in the complete soil profile (0–100 cm) at the lower position as compared with control plot. Coefficients of variation (CVs) of SOC in soil profile decreased by 18.2% in the upper, 12.8% in the middle, and 30.9% in the lower slope positions whereas CVs of 137Cs and 210Pbex decreased more than 31% for all slope positions after 50 tillage events. 137Cs and 210Pbex in soil profile were significantly linearly correlated with SOC with R2 of 0.81 and 0.86 (P < 0.01) on the control plot, and with R2 of 0.90 and 0.86 (P < 0.01) on the treatment plot. Our results evidenced that 37Cs and 210Pbex, and SOC moved on the sloping land by the same physical mechanism during tillage operations, indicating that fallout 137Cs and 210Pbex could be used directly for quantifying dynamic SOC redistribution as affected by tillage erosion.  相似文献   

2.
Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. 137Cs and 210Pbex (excess 210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The 137Cs and 210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both 137Cs and 210Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3100 t km-2 year-1, which was significantly less than 6930 t km-2 year-1 reported for runoff plots on a 10°cultivated slope at the Suining Station of soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.  相似文献   

3.
The purpose of this research was to evaluate the applicability of conventional 137Cs sampling and a simplified approach, for estimating medium-term tillage- and water-induced soil erosion and sedimentation rates on agricultural land in Chile. For this purpose, four study sites under contrasting land use and management were selected in central-south Chile. First, a conventional 137Cs approach, based on grid sampling was applied, adapting a mass balance conversion model incorporating soil movement by tillage to the site specific conditions of the study region. Secondly, using the same conversion model, the feasibility of estimating soil redistribution rates from measurements of 137Cs inventories based on composite soil samples taken along contour lines was also tested at all four sites. The redistribution rates associated with tillage and water and the total rates estimated using both methods correlated strongly at all four sites. The conventional method provides more detailed information concerning the redistribution processes operating over the landscape. The simplified method is suitable for assessing soil loss and sediment accumulation in areas exhibiting simple topography and almost similar slopes along the contour lines. Under these conditions, this method permits faster estimation of soil redistribution rates, providing the possibility of estimating soil redistribution rates over larger areas in a shorter time. In order to optimise the costs and benefits of the methods, the sampling and inventory quantification strategy must be selected according to the resolution of the required information, and the scale and complexity of the landscape relief. Higher tillage- and water-induced erosion rates were observed in the annually ploughed cropland sites than in the semi-permanent grassland sites. Subsistence managed crop and grassland sites also show greater erosion effects than the commercially managed sites. The 137Cs methods used permit discrimination between redistribution rates observed on agricultural land under different land use and management. The 137Cs technique must be seen as an efficient method for estimating medium-term soil redistribution rates, and for planning soil conservation and sustainable agricultural production under the climatic conditions and the soil type of the region of Chile investigated.  相似文献   

4.
Wind erosion has degraded over one-half billion hectares of land worldwide. 137Cesium (137Cs) has been used as a tracer to study long-term rates of soil redistribution by water and, to a lesser extent, by wind. Early studies assumed that the decline in 137Cs activity for a potentially eroded soil relative to that for an uneroded soil was linearly proportional to soil loss. More recently, models have emerged that consider the effects of soil cultivation and the particle surface area-dependent partitioning of 137Cs on soils. We investigated the partitioning of 137Cs in wind-eroded sediments and with soil surface samples sieved into contiguous ranges of particle sizes. We also compared the 137Cs activities and stratification of several adjacent soils with known wind erosion and deposition histories. Finally, we tested 137Cs-based soil loss models with measured data from sites with documented histories. 137Cs activities and mean particle diameters of aeolian samples agreed well with the 137Cs activities and respective mean diameters of the sieved surface soil samples. Good agreement between model estimations and measured data indicated that 137Cs models developed to estimate soil redistribution by water were also applicable to soil redistribution by wind provided that the models contained an appropriate particle size correction parameter.  相似文献   

5.
Vast areas of Europe were contaminated by the Chernobyl-derived 137Cs in April–May 1986. This paper reports a detailed study of the post-fallout 137Cs redistribution within a 1 ha field located in the Chasovenkov Verh catchment in the northern part of the Middle-Russian upland. Particular attention was paid to the study of reference inventories. It is shown that the random spatial variability of 137Cs is similar within undisturbed and cultivated parts of a flat interfluve. Systematic spatial variability is not essential for a relatively short (200 m) topographical unit with simple relief. The analysis of a soil redistribution pattern within the study field using the Chernobyl 137Cs technique demonstrates that it is possible to identify areas of soil loss/gain. This pattern does not reflect soil redistribution for the whole field, because these have been only 12 years since the Chernobyl accident. Net erosion rates based on 137Cs method were comparable to soil losses directly measured at the study field.  相似文献   

6.
沂蒙山区土壤侵蚀的137Cs示踪法初步研究   总被引:1,自引:0,他引:1  
沂蒙山区是我国北方典型的土石山区,当地土壤由片麻岩、砂岩发育而来,质地疏松易流失,缺乏对泥沙侵蚀监测的长期观测数据。本研究采集了山东省沂蒙山区某一小流域的48个土样共72个样品,利用137Cs示踪技术,确定该地区土壤中的137Cs背景值约为1 740 Bq m-2,并利用杨浩等人的土壤侵蚀定量模型,对该流域土壤侵蚀进行了初步估算。估算结果表明该地区非耕地土壤侵蚀的平均速率为2 531 t km-2a-1,坡耕地土壤侵蚀的平均速率为6 953 t km-2a-1。由于人类耕作活动以及地形的影响,坡耕地土壤侵蚀严重,土壤侵蚀速率在坡面上呈复杂变化。当地土壤流失严重,使得土壤涵蓄水能力下降,加剧了洪涝、干旱灾害的发生,影响当地农业的可持续发展和人们生活水平的提高。  相似文献   

7.
农耕地土壤137Cs与210Pbex深度分布过程对比研究   总被引:2,自引:0,他引:2  
探讨了137Cs与210Pbex在农耕地土壤深度分布过程的差异。基于137Cs与210Pbex的不同沉降过程,考虑到核素由犁耕层向犁底层的扩散,对农耕地土壤137Cs、210Pbex的深度分布过程进行了理论推导,并以杨凌符家庄麦田剖面的实测数据予以验证,同时讨论了实测符家庄麦田剖面137Cs、210Pbex深度分布的规律特征及其原因,以此阐明了137Cs与210Pbex在农耕地土壤深度分布过程的差异。137Cs源于大气核试爆,没有持续沉降补充,犁耕层和犁底层土壤137Cs深度分布一直处于随时间变化的非稳定态;而210Pbex是天然核素,存在大气沉降的持续补充,犁耕层和犁底层土壤210Pbex深度分布最终呈稳定态。农耕地土壤137Cs、210Pbex深度分布的实测值曲线与理论值曲线的差异,尤其210Pbex,可能与耕作深度的变化历史或土地利用(覆被)变化有关。  相似文献   

8.
川中丘陵区土壤侵蚀对土壤特性和作物产量的影响   总被引:8,自引:0,他引:8  
Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin, southwestern China. Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m). On the long slope (110 m) and medium slope (40 m), water erosion was the dominant erosion process. Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope; however, there was no significant correlation among them on the short slope, suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions, while tillage erosion transported soil materials unselectively. On the medium slope, SOM, total N, and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope, indicating that water erosion on this slope was still the dominant soil redistribution process. Similar patterns were found for the responses of grain yield, aboveground biomass, and harvest index for slopes. These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.  相似文献   

9.
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 137Cs technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.  相似文献   

10.
近100年喀斯特槽谷区洼地沉积速率与流域产沙强度   总被引:1,自引:1,他引:1  
首次尝试通过沉积物定年反演喀斯特洼地流域单元近100年尺度的侵蚀产沙历史,这有助于认识人类活动对喀斯特石漠化演化过程的影响。以喀斯特槽谷区典型洼地—常家洼洼地为研究对象,应用137Cs、210Pbex定年法分析了近100年的流域产沙强度特征。结果表明:(1)洼地平均沉积速率为1.00cm/a(1917—1963年)和0.25 cm/a(1963—2017年),流域的平均产沙模数为609t/(km^2·a)(1917—1963年)和152t/(km^2·a)(1963—2017年);(2)1917—1963年期间流域产沙强度远高于1963年以后,这与该地区民国至新中国建国初期强烈的人类活动有密切关系,尤其是上世纪50年代末大规模伐木;(3)1963年以来产沙强度明显减小,这是由于此前发生过较强侵蚀导致土壤变少,局部基岩出露,加之此间植被恢复、人类扰动强度降低和水土保持工程实施;(4)常家洼流域产沙强度高于西南其他喀斯特地区,与流域岩性和人为扰动有关。喀斯特石漠化并非仅是近50年人类活动的结果,也与近100年乃至更长时间尺度的人类活动有关。  相似文献   

11.
This paper presents the results of using the 137Cs technique to assess soil erosion rates of both sloping cultivated land and flat terraces in the Upper Yangtze River Basin, China. The study was carried out on eighteen sloping cultivated fields and four flat terrace fields in eight counties and cities over the eastern part of the basin. The 137Cs-reference inventory ranged from 620.5 to 2573.2 Bq/m2. For the 18 sloping cultivated fields, the average 137Cs inventory over a field ranged from 204.9 to 1847.7 Bq/m2, which accounts for 15–77% of the local 137Cs reference inventory, and the average water erosion rate ranged from 758 to 9854 t/km2 per year, with erosion rates of <1000 t/km2 per year in two fields; 1000–5000 t/km2 per year in eight fields; and >5000 t/km2 per year in eight fields. It is apparent that most of the sloping cultivated fields suffer severe or very severe soil erosion. For the four terrace fields under this study, the average 137Cs inventory over a field ranged between 915.8 and 2675.4 Bq/m2, which accounts for 97–104% of the local 137Cs reference inventory. However, water erosion is very slight on the terrace fields and little soil is lost from the terraces. The study also indicated that the severity of soil erosion is strongly related to soil texture and slope gradient.  相似文献   

12.
以黄土丘陵区典型侵蚀沟道为对象,基于沟道剖面有机碳和137Cs数据,采用碳库重分布模型估算了典型沟道侵蚀诱发的CO2通量,并通过检验模型预测效率、解析影响因子,提出了模型校正的思路。结果表明:(1)在长期侵蚀作用下,沟道侵蚀区和沉积区均表现为剧烈的侵蚀效应,侵蚀区侵蚀速率介于30.99~46.44 mm/a,沉积区侵蚀速率介于34.20~37.88 mm/a,沉积区土壤流失速率略小于侵蚀区;(2)碳库重分布模型估算显示,侵蚀区与沉积区均表现为较强烈的碳源效应,侵蚀区CO2通量介于18.41~28.44 g/(m2·a),沉积区CO2通量介于22.19~29.25 g/(m2·a);(3)侵蚀部位、土壤容重、有机碳含量、侵蚀量、沟道平均坡度、植被地上部与地下部生物量共同解释了碳库重分布模型预测效率的变异特征(R2=0.68),其中侵蚀部位、侵蚀量、有机碳含量、土壤容重、植被地下部对预测效率有强驱动效应;(4)引入被忽略的植被新输入有机碳库参数,有望校正碳库重分布模型,提升模型预测效率。该研究结果明确了碳库重分布模型在沟道侵蚀区相比沉积区有更高的CO2通量预测效率,为进一步提高模型的预测精度,可以考虑引入植被输入有机碳库作为校正参数。  相似文献   

13.
丁肇龙  汪君  胥鹏海  曹月娥  刘巍  杨建军 《土壤》2018,50(2):398-403
风力侵蚀是准东干旱与半干旱地区土地沙漠化的关键因素,通过野外考察和土壤~(137)Cs取样分析,对准东地区不同土地利用类型下土壤~(137)Cs分布特征及风力侵蚀进行了初步研究。研究表明,不同土地利用类型土壤~(137)Cs剖面分布特征不同,~(137)Cs基本分布在0~20 cm,甚至更浅,~(137)Cs活度值介于0~65.50 Bq/kg;各样点~(137)Cs总量介于0~1 698.29Bq/m~2,其中背景值为1 698.29 Bq/m~2,不同地类~(137)Cs总量排序为:低平地草甸(背景值样点)灌丛沙堆荒漠草地砾石戈壁盐碱地耕地固定沙地半固定沙地风蚀裸地;估算出耕地和非耕地各样点的风蚀速率,耕地平均风蚀速率为744.50 t/(km~2·a),非耕地风蚀速率介于945.06~4 404.01 t/(km~2·a)之间,平均值为2 589.96 t/(km~2·a)。  相似文献   

14.
该文通过紫色丘陵区响水滩小流域不同土地利用类型、不同坡度和坡长、不同地貌部位土壤剖面中 137Cs含量的测定与分析,对其侵蚀空间分布进行了估算。研究结果表明:该流域 137Cs含量的背景值为1870 Bq/m2;流域内坡耕地、林地的年平均侵蚀强度分别为4468、1759 t/(km2·a);土壤侵蚀量与坡长、坡度均指数相关;丘顶、丘坡和鞍部的年平均侵蚀强度分别为2125、4676、3625 t/(km2·a)。结果表明土地利用类型、坡长和坡度、地貌部位对土壤侵蚀量影响很大,坡耕地是该流域泥沙的主要来源。  相似文献   

15.
Soil erosion significantly affects the most productive lands in Argentina, particularly the region called “Pampa Ondulada”. Quantification of the actual rates and patterns of soil loss is necessary for designing efficient degradation control strategies. The aim of this investigation was to gather using the 137Cs technique a reliable set of data of erosion and sedimentation rates, in order to describe the long-term erosive landscape dynamic in a 300 ha basin representative for the “Pampa Ondulada” region of Argentina. The general topography of the basin is undulated with slopes gradients between 0 and 2.5% and slope lengths up to 800 m long. The main land use consisted in annual cropping under conventional tillage.For the soil erosion study in the basin the 137Cs technique was used, which is based on the comparison between the 137Cs inventories surveyed with a local reference 137Cs profile. The sampling strategy was based on a multiple transect approach.The estimated mean soil erosion rates obtained applying Mass Balance Model 2 for the studied hillslopes ranged between −11.5 and −36 t ha−1 per year and fitted the low and moderate erosion classes according to FAO. These values ranged beyond the admitted tolerance. Sedimentation was observed at the lower landscape positions probably related to changes from convex to concave slopes. The application of the 137Cs technique in the studied basin proved to be a useful and sensible tool for assessing erosion/deposition rates. In areas with low topographic gradients like the Pampa Ondulada region, the slope length appears to be an important property for predicting spatial patterns of erosion rates.  相似文献   

16.
17.
Although much of the recent attention on the environmental problems has focused on climatic change, there is also increasing concern that accelerated soil erosion and associated land degradation represent a major problem for sustainable development and environmental protection. There is an urgent need to obtain reliable quantitative data on the extent and rates of soil erosion worldwide to provide a more comprehensive assessment of the magnitude of the problems and to underpin the selection of effective soil conservation measures. The use of environmental radionuclides, in particular 137Cs, affords an effective and valuable means for studying erosion and deposition within the landscape. The key advantage of this approach is that it can provide retrospective information on medium-term (30–40 years) erosion/deposition rates and spatial patterns of soil redistribution, without the need for long-term monitoring programmes. Advantages and limitations of the technique are highlighted. The launching of two closely linked International Atomic Energy Agency (IAEA) research networked projects in 1996 involving some 25 research groups worldwide has made a major contribution to co-ordinating efforts to refine and to standardise the 137Cs technique. The efficacy and value of the approach has been demonstrated by investigations in a number of environments. Significant developments that have been made to exploit its application in a wide range of studies are reported in this review paper. Other environmental radionuclides, such as unsupported 210Pb and 7Be offer considerable potential for use in soil erosion investigations, both individually and complementary to 137Cs. The IAEA through research networks and other mechanisms is promoting further development and applications of these radionuclides in soil erosion and sedimentation studies for a sustainable resource use and environmental protection.  相似文献   

18.
赣南红壤丘陵区是我国土壤侵蚀与土地退化比较严重的地区,以南丰县为例,应用137 Cs示踪技术探讨不同土地利用方式下土壤侵蚀与养分元素的关系。结果表明:(1)湿地松林、桔园、水田3种土地利用方式作用下土壤中137 Cs与养分元素分布差异显著,在垂直剖面上,湿地松林137 Cs含量呈指数递减分布,水田与桔园137 Cs含量因人为干扰在耕层内均匀分布;有机质与137 Cs有相似的分布特征;全氮、碱解氮、速效磷、速效钾含量均呈现一定表聚性。(2)位于坡地的2种土地利用方式中,湿地松林137 Cs、全氮、碱解氮、速效磷、速效钾、有机质含量均表现为下坡>上坡>中坡;桔园137 Cs活度表现为中坡>下坡>上坡,全氮、碱解氮、速效磷表现为下坡>中坡>上坡,而速效钾、有机质最大值均出现在上坡。(3)相关性分析表明,土壤137 Cs与有机质、全氮、碱解氮显著正相关,表明小流域有机质、氮元素可能与137 Cs有相同的物理运移方式,pH与137 Cs显著负相关,速效磷、速效钾则与137 Cs不相关。(4)3种土地利用方式中位于小流域谷地的水田137 Cs、有机质、全氮、碱解氮含量最高,坡地上桔园坡面137 Cs与土壤养分元素含量均高于湿地松林地,表明一定程度的坡改梯桔园种植模式能有效缓解土壤侵蚀与养分流失,改善区域生态环境。  相似文献   

19.
种植密度对川中丘陵夏玉米茎秆性状及产量的影响   总被引:7,自引:2,他引:7  
以玉米品种‘正红505’为材料,设置4.50万株·hm~(-2)、5.25万株·hm~(-2)、6.00万株·hm~(-2)、6.75万株·hm~(-2)、7.50万株·hm~(-2) 5个密度处理,研究种植密度对川中丘陵夏玉米茎秆性状及产量的影响。结果表明:随种植密度的增加,株高、穗位高、节间长、茎节长粗比逐渐增加,茎粗、茎粗系数、节间干重、单位茎长干物质重、茎秆压碎强度和外皮穿刺强度逐渐减小,除穗位高外,其余各性状均存在显著性差异;其中,当种植密度增加到7.50万株·hm~(-2)时,第1、3、5茎节的外皮穿刺强度分别较4.50万株·hm~(-2)显著降低27.10%、22.78%和30.80%。在本试验设置的密度范围内,玉米产量随密度的增加而先增后减,在6.00万株·hm~(-2)处获得最大值,与4.50万株·hm~(-2)相比,6.00万株·hm~(-2)显著增产12.02%。随种植密度增加,玉米穗长、穗粗、成穗率、穗粒数和千粒重显著降低,有效穗数和秃尖长显著增加。相关分析表明,茎秆压碎强度与外皮穿刺强度呈极显著正相关(r=0.93**),且茎秆压碎强度和外皮穿刺强度分别与茎粗、茎粗系数、节间粗、节间干重和单位茎长干物质重呈显著或极显著正相关,而与株高、节间长和茎节长粗比呈负相关或极显著负相关。其中,茎秆农艺性状与茎秆压碎强度的相关性更好。单株产量与茎粗、茎粗系数、节间粗、节间干重、单位茎长干物质重、茎秆压碎强度和外皮穿刺强度呈显著或极显著正相关,与节间长和茎节长粗比呈显著负相关。逐步回归分析表明,茎粗系数和单位茎长干物质重对茎秆压碎强度的影响最大。综上所述,种植密度是影响玉米茎秆性状和产量的重要因素,适当增加种植密度可以显著增加玉米群体产量,茎粗系数和单位茎长干物质重可以作为评价玉米茎秆抗倒伏能力的重要农艺指标。  相似文献   

20.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号