首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water, Air, & Soil Pollution - Agricultural soil is a major source of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3). Little information is available on emissions of these gases from...  相似文献   

2.
3.
We examined the influence of various urea granule sizes (< 2, 7.0, 9.9 and 12.7 mm) applied into a silt loam soil (experiment 1) and soil types (sandy, silt and clay loam) treated with the largest granule (experiment 2) on gaseous N loss (except N2) at field capacity. The prilled urea (PU) was mixed into the soil whereas the urea granules were point-placed at a 5.0-cm depth. For experiment 1, N2O emission was enhanced with increasing granule size, ranging from 0.17–0.50% of the added N during the 45-day incubation period. In the case of experiment 2, the sandy loam soil (0.59%) behaved similarly with the silt loam (0.53%) but both showed remarkably lower emissions than were found for the clay loam soil (2.61%). Both nitrification and N2O emissions were delayed by several days with increasing granule size, and the latter was influenced by mineral N, soil water and pH. By contrast, the NH3 volatilization decreased with increasing granule size, implying the inhibition of urease activity by urea concentration gradients. Considering both experimental results, the NH3 loss was highest for the PU-treated (1.73%) and the larger granules regardless of soil type did not emit more than 0.27% of the added N over 22 days, possibly because the high concentrations of either mineral N or NH4 + in the soil surface layer (0–2.5 cm) and the high H+ buffering capacity might regulate the NH3 emission. Similar to the pattern of NH3 loss, NOx emission was noticeably higher for the PU-treated soil (0.97%) than for the larger granule sizes (0.09–0.29%), which were the highest for the sandy and clay loam soils. Positional differences in the concentration of mineral N and nitrification also influenced the NOx emission. As such, total NH3 loss was proportional to total NOx emission, indicating similar influence of soil and environmental conditions on both. Pooled total N2O, NH3 and NOx emission data suggest that the PU-treated soil could induce greater gaseous N loss over larger urea granules, largely in the form of NH3 and NOx emissions, whereas a similar increase with the largest granule size was mainly due to the total N2O flux.  相似文献   

4.
Ammonia volatilization from slurry is undesirable because of environmental N eutrophication and loss of fertilizer value. The dry matter content of slurry, the application technique and the weather conditions are the main factors influencing NH3 losses from landspread slurry. In a field of winter wheat a two factor plot experiment was conducted to study single and combined effects of slurry separation and application techniques, including broadcast and banded application, as well as incorporation by injection and the flexible harrow. Ammonia volatilization from all treatments could be measured simultaneously, and at ambient climatic conditions by an indirect, open measurement technique. The experiment was repeated four times. Due to varying weather conditions and treatment effects, cumulative NH3 volatilization from the slurry during the first 48 hours ranged from 4 to 90% of total ammoniacal nitrogen (TAN). Both separation and incorporation significantly decreased NH3 losses, but only the combination of dry matter reduction and injection or harrowing reduced NH3 volatilization to about 30% of TAN in all weather conditions. Banding alone did not efficiently conserve slurry N, but even enhanced NH3 volatilization in wet conditions.  相似文献   

5.
This study investigated the maturity and gaseous emissions from vermicomposing with agricultural waste. A vermicomposting treatment (inoculated Eisenia fetida) was conducted over a 50-day period, taking tomato stems as the processing object and using cow dung as the nutrient substrate. A thermophilic composting treatment without earthworm inoculation was operated as a control treatment. During the experiment, maturity indexes such as temperature, pH, C/N ratio, and germination index (GI) were determined and continuous measurements of earthworm biomass and CH4, N2O, and NH3 emissions were carried out. The results showed that the temperature during vermicomposting was suitable for earthworm survival, and the earthworm biomass increased from 10.0 to 63.1 kg m?3. Vermicomposting took less time on average to reach the compost maturity standard (GI 80%), and reached a higher GI (132%) in the compost product compared with the thermophilic composting treatment. Moreover, the decrease of the C/N ratio in vermicompost indicated stabilization of the waste. The activities of earthworms played a positive role in reducing gaseous emissions in vermicompost, resulting in less emissions of NH3 (12.3% NH3-N of initial nitrogen) and total greenhouse gases (8.1 kg CO2-eq/t DM) than those from thermophilic compost (24.9% NH3-N of initial nitrogen, 22.8 kg CO2-eq/t DM). Therefore, it can be concluded that vermicomposting can shorten the period required to reach compost maturity, can obtain better maturity compost, and at the same time reduce gaseous emissions. As an added advantage, the earthworms after processing could have commercial uses.  相似文献   

6.
尿素施用对土壤pH值和模拟温室箱内NH_3和NO_2浓度的影响   总被引:8,自引:1,他引:8  
在模拟条件下测定尿素引起土壤的pH变化及其对氨挥发的影响,同时利用被动采样法测定模拟温室箱中施用尿素所造成的NO2和NH3浓度变化趋势。实验表明:在短期内施用尿素能明显升高土壤pH,并增加土壤氨挥发。用1%柠檬酸作为NH3的吸收剂,测得NH3浓度在6~18μgm-3之间,用25%TEA作为NO2的吸收剂,测得NO2的浓度在12~35μgm-3之间。施用氮肥的模拟温室箱中NH3、NO2浓度明显高于不使用氮肥的状况及背景环境。  相似文献   

7.
Literature reports on N2O and NO emissions from organic and mineral agricultural soil amended with N-containing fertilizers have reached contradictory conclusions. To understand the influence of organic manure (OM) and chemical fertilizer application on N2O and NO emissions, we conducted laboratory incubation experiments on an agricultural sandy loam soil exposed to different long-term fertilization practices. The fertilizer treatments were initiated in 1989 at the Fengqiu State Key Agro-ecological Experimental Station and included a control without fertilizer (CK), OM, mineral NPK fertilizer (NPK), mineral NP fertilizer (NP), and mineral NK fertilizer (NK). The proportion of N emitted as NO and N2O varied considerably among fertilizer treatments, ranging from 0.83% to 2.50% as NO and from 0.08% to 0.36% as N2O. Cumulative NO emission was highest in the CK treatment after NH 4 + -N was added at a rate of 200 mg N kg?1 soil during the 612-h incubation period, whereas the long-term application of fertilizers significantly reduced NO emission by 54–67%. In contrast, the long-term application of NPK fertilizer and OM significantly enhanced N2O emission by 95.6% and 253%, respectively, compared to CK conditions. The addition of NP fertilizer (no K) significantly reduced N2O emission by 25.5%, whereas applications of NK fertilizer (no P) had no effect. The difference among the N-fertilized treatments was due probably to discrepancies in the N2O production potential of the dominant ammonia-oxidizing bacteria (AOB) species rather than AOB abundance. The ratio of NO/N2O was approximately 24 in the CK treatment, significantly higher than those in the N-fertilized treatments (3–11), and it decreased with increasing N2O production potential in N-fertilized treatments. Our data suggests that the shift in the dominant AOB species might produce reciprocal change in cumulative NO and N2O emissions.  相似文献   

8.
农田土壤中N_2O释放的水温特征研究   总被引:5,自引:0,他引:5  
室内模拟研究不同水热条件下土壤中N2O的释放特征,有助于阐明N2O释放的水热效应机理。本文通过室内试验研究了西北地区的典型耕种土壤土娄土中N2O在不同水温变化下的释放特征,借助化学反应动力学理论对其释放机理进行了初步的探讨。结果表明:10℃和30℃下,不同含水量的土壤中N2O的浓度变化随着培养时间的延长呈"S"型曲线。可用方程C=1/[A+Bexp(-t)]来描述。随着温度的升高(10℃到30℃),N2O释放的快速期,减速期,稳定期的启动时间明显提前。在较低的土壤湿度范围内(27%至58%wfps),土壤中N2O释放的稳定浓度与土壤湿度呈正相关;田间持水量(58%wfps)时,N2O释放的稳定浓度达到最大;超过田间持水量时,其逐渐变小。当土壤湿度从27%-42%wfps增加时,30℃下土壤中N2O释放的稳定浓度大于10℃下的;当土壤湿度等于或大于田间持水量(58%wfps)时,30℃下土壤中N2O释放的稳定浓度小于10℃下的。低温下(10℃)的风干土壤(8%wfps)存在吸收N2O的现象。不同水热条件下土壤硝化和反硝化过程中N2O释放的表观化学反应速率常数和对应活化能的大小决定了土壤中N2O的释放量及难易程度。  相似文献   

9.
采用盆栽试验方法,研究尿素涂层后施用于水田土壤其渗出液NO3--N和NH4+-N含量的变化情况。研究结果表明:与未涂层尿素相比,施用尿素涂层可使氮素释放变得平缓,土壤渗出液中NH4+-N和NO3--N浓度明显降低,有利于水稻生长对氮素的吸收利用;在等氮量条件下,施用涂层尿素处理的土壤渗出液中的NH4+-N浓度明显低于未涂层尿素处理,且尿素用量越低这一差异越明显,而土壤渗出液中的NO3--N浓度施入土壤后前10天涂层尿素低于未涂层尿素处理,而至第18天则表现出高于未涂层尿素处理的趋势;涂层处理土壤渗出液NO3--N和NH4+-N之和大都小于未涂层处理。  相似文献   

10.
11.
为明确减量灌溉和施肥对设施菜地N2O排放的影响,提出有效的N2O减排措施,本研究采用静态箱法,对北京郊区设施芹菜在灌溉和有机肥(沼渣)减量处理下的N2O排放进行全生长季监测,分析灌溉和有机肥减量对土壤充水孔隙度(WFPS)、NO3--N和NH4+-N含量及土壤N2O排放的影响。试验为2个灌溉量和3个有机肥施用量的裂区双因素设计,具体为:常规灌溉量(H处理)下的常规施肥(HN)、减量1/3施肥(HN3)和不施肥 (HN0),以及减量20%灌溉(L处理)下的常规施肥(LN)、减量1/3施肥(LN3)和不施肥 (LN0)共6个处理。结果表明,L处理在保证芹菜产量的前提下,对土壤充水孔隙度及无机氮含量无显著影响,但N2O排放总量较H处理减少32.23%,达极显著水平(P<0.01)。与常规施肥处理相比,减量1/3施肥和不施肥处理的土壤NO3--N含量分别降低43.96%和76.42%,均达极显著水平(P<0.01),不同施肥量处理间土壤NH4+-N含量无显著差异;芹菜产量随施氮量增加而增加,但减量1/3施肥和常规施肥处理对芹菜产量影响无显著差异,芹菜全生长季的土壤累积N2O排放总量显著减少62.04%(P<0.01)。本试验条件下,减量20%灌溉(L处理)和减量1/3施肥(N3处理)均能保证芹菜产量,显著降低芹菜地N2O排放通量,减少生产成本投入。  相似文献   

12.
为搞清湿地土壤驱动N2O排放的关键氮源类型,有效减少湿地N2O的排放,本文通过室内控制温湿度,用气相色谱法分析不同外源氮素对湿地N2O排放的影响。结果表明:外加氮源组总是高于对照组N2O排放量(4.4 mg·m-3)。在设定的剂量范围内,单独添加尿素或尿素与硝酸铵1∶1配合时N2O排放量呈现先增后减的单峰分布趋势,峰值分别为10.6 mg·m-3和229.0 mg·m-3;单独添加硝酸铵时N2O排放量(32.6~111.0 mg·m-3)随着氮素添加量增加呈现持续上升趋势。单独添加尿素或硝酸铵、尿素与硝酸铵1∶1配合均促进N2O的排放,但硝酸铵尿素混合添加对N2O排放量的贡献单独添加硝酸铵单独添加尿素。这为预测内蒙古高原区农牧交错带湿地氮素输入可能带来的温室效应和有效减排提供科学依据。  相似文献   

13.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3, 300mgN kg-1)和亚硝酸盐(NaNO2, 1mgN kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响。结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进。所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01)。在60% WHC条件下,这种情况维持时间较短(21h),但如果含水量高(90% WHC)这种情况会持续很长时间(2wk以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用。本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上。Spearman等级相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高。灭菌土壤添加NO2-能比未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O。  相似文献   

14.
Efforts to restore productivity of pastures often employ agricultural management regimes involving either tillage or no-tillage options combined with various combinations of fertilizer application, herbicide use and the planting of a cash crop prior to the planting of forage grasses. Here we report on the emissions of CO2, N2O and NO from the initial phases (first 6 months) of three treatments in central Rondônia. The treatments were (1) control; (2) conventional tillage followed by planting of forage grass (Brachiaria brizantha) and fertilizer additions; (3) no-tillage/herbicide treatment followed by two plantings, the first being a cash crop of rice followed by forage grass. In treatment 3, the rice was fertilized. Relative to the control, tillage increased CO2 emission by 37% over the first 2 months, while the no-tillage/herbicide regime decreased CO2 emissions by 7% over the same period. The cumulative N2O emissions over the first 2 months from the tillage regime (0.94 kg N ha–1) were much higher than the N2O releases from either the no-tillage/herbicide regime (0.64 kg N ha–1) or the control treatment (0.04 kg N ha–1). The highest levels of N2O fluxes from both management regimes were observed following N fertilizations. The cumulative NO releases over the first 2 months were largest in the tillage treatment (0.98 kg N ha–1), intermediate in the no-tillage treatment (0.72 kg N ha–1), and smallest in the control treatment (0.12 kg N ha–1). For the first week following fertilization the percentage of fertilizer N lost as N2O plus NO was 1.0% for the tillage treatment and 3.0% for the no-tillage treatment.  相似文献   

15.
农田是温室气体氧化亚氮(N2O)的重要排放源,位于东北地区的黑土地是我国重要的粮食生产基地。目前我国农田N2O排放增速正在放缓,但是东北黑土区仍在加快。针对我国东北黑土区的自身特点和N2O排放研究现状,本文综合分析了黑土N2O排放特征、产生过程与影响因素。结果表明,东北农田黑土N2O-N背景排放量平均为0.56±0.29 kg·hm?2,施用化肥黑土N2O-N平均排放量为1.49±1.09 kg·hm?2,化肥氮诱导的N2O排放系数(EF)为0.45%±0.42%。与中国旱地和世界其他黑土区相比,东北农田黑土的背景排放量和EF均处于较低水平。这是因为在正常降雨条件下,东北黑土N2O主要是由硝化作用产生,反硝化作用受到活性碳缺乏的限制。冻融过程则可能促进反硝化作用进行,诱导春融期N2O出现爆发式排放。与我国其他农田相比,东北黑土N2O排放研究明显不足,今后应加强对不同区域黑土N2O排放的原位观测,阐明冻融过程N2O的产生机制,评估黑土N2O排放对气候变化的响应;同时应加强研究秸秆还田、有机肥施用等措施对N2O排放的影响效应,从而制定出黑土地质量提升和N2O减排的双赢措施。  相似文献   

16.
Nitrification inhibitors areuseful for reducing fertilizer related environmentalpollution. Use of such nitrification inhibitors as,benzotriazole, o-nitrophenol, m-nitroaniline anddicyandiamide has effectively regulated nitrification in acitronella (Cymbopogon winterianus Jowitt.) fieldfertilized with urea. At 450 kg N ha-1 yr-1, there wassubstantially higher accumulation of NH+ 4-N in thesoil. Proper placement (5 cm below soil surface) offertilizers have minimized NH3 emissions even fromnitrification inhibitor treated urea plots. Thus, thenitrification inhibitors can potentially reduceenvironmental pollution connected to NO- 3 in soilwhile maintaining low NH3 gas emissions, if thefertilizer is properly placed.  相似文献   

17.
外加可溶性碳源对华北典型农田土壤N2O、CO2排放的影响   总被引:1,自引:0,他引:1  
以华北平原典型农田土壤为对象,运用静态培养系统研究方法,设置室内培养试验,研究添加不同浓度葡萄糖对土壤N2O、CO2排放的影响.结果表明:碳氮配施的外源添加方式明显促进N2O和CO2排放,其排放通量均高于对照组和只添加氮源的处理.在配施碳源葡萄糖浓度为0.5 g/kg时N2O排放通量最高(NH4+组2 500 μg/(kg·d),单位以N计,下同,NO3-组1 500 μg/(kg·d)),4.0 g/kg时N2O排放通量最低(NH4+组500 μg/(kg·d),NO3-组800 μg/(kg·d));葡萄糖浓度为2.0 g/kg时CO2排放通量最高(NH+组500mg/(kg· d)),0.5 g/kg时CO2排放通量最低(NH+组100 mg/(kg,d)).从培养开始到结束,只添加氮源的土壤NH+含量变化不明显,NO3-含量增至29.21 mg/kg(NH4+组)和62.25 mg/kg(NO3-组);而配施葡萄糖的土壤NH+含量降为不足1 mg/kg(NH4+组),NO3-含量明显减少.N2O累积排放通量与葡萄糖浓度呈负相关(NH4+组),CO2累积排放通量与葡萄糖浓度呈正相关.分析结果表明,外加可溶性碳源明显减少土壤中NH4+和NO3-含量,并且促进土壤N2O、CO2排放,其排放通量大小与C/N比有关.  相似文献   

18.
ABSTRACT

The volatilization of ammonia is the main reaction that decreases the efficiency of nitrogen fertilization and in order to reduce losses. new technologies such as addition of N-n-butyltriamide thiophosphate (NBPT) to the conventional urea granule (UNBPT) or the covering with polymer and sulfur (UPS) have been developed with the aim to optimize nitrogen fertilization. This work aimed to evaluate the volatilization of ammonia (NH3) in conventional urea (CU) and fertilizers with associated technology under: (a) three temperature conditions (b) and three soil moisture management. The fertilizer CU presented the highest losses by volatilization of 25.93 mg dm?3 while fertilizers with associated technology registered 23.93 mg dm?3 and 8.26 mg dm?3 for UNBPT and UPS. respectively. The highest volatilization of NH3 was registered at 45°C for all fertilizers. Fertilizers with associated technology extended the N-release time. delaying the volatilization peak up to the 6th day or even promoted the gradual release of fertilizer in the soil. such as UPS. The UNBPT showed the lowest volatilization values in the 1st water application. while the CU had lower volatilization values at 25°C (14.48 mg dm?3 NH3) and 35°C (16.99 mg dm?3 NH3) when the matric potential was increased from ?100 to ?50 kPa in the 1st application of water. The UPS did not differ from the volatilization values for the three times of water application.  相似文献   

19.
Two series of laboratory-scale vertical flow systems (flooded and nonflooded columns) were designed to compare nitrogen removal performance, nitrous oxide emission, and ammonia volatilization under different water levels upon treating diluted digested livestock liquid. In these systems, influent was supplied at three hydraulic loading rates (HLRs of 1.25, 2.5, and 5 cm day?1) during stage 1 and the rates were doubled during stage 2 when the water levels of nonflooded columns were elevated from zero to half the height of the soil column. After hydraulic loading rates doubled, the average removal rates of total nitrogen in flooded columns varied from 1.27 to 2.94 g?2 day?1 and those in nonflooded columns ranged from 1.23 to 3.88 g?2 day?1. The T-N removal at an HLR of 10 cm day?1 in the nonflooded column with an elevated water table level had higher efficiency than that in the flooded column, suggesting T-N removal is enhanced in the nonflooded column probably due to the improved coupled nitrification–denitrification process under the elevated water table level condition. On the other hand, there was a significant correlation (r 2 = 0.532, p < 0.001) between the N2O flux and redox potential that mainly corresponded to water levels and HLRs, suggesting anoxic or aerobic conditions stimulate N2O emission by enhancing the nitrification (nitrification–denitrification) process. In contrast, NH3 volatilization had a high flux in the anaerobic condition mainly because of flooding. Based on the experimental results, it is hypothesized a nonflooded condition with higher water table level (Eh range of ?160 to +260 mV) would be suitable to reduce N2O emission and NH3 volatilization peak value by at least half while maintaining relatively efficient nitrogen removal performance.  相似文献   

20.
在田间持水量WFPS为70%、温度为20℃的条件下,通过室内静态培养方法研究铵态氮源与不同碳源结合,对华北平原典型小麦-玉米轮作体系土壤N_2O、CO_2释放的影响。其中,碳源种类分别为葡萄糖、果胶、淀粉、纤维素、木质素和秸秆。结果表明添加葡萄糖和果胶有效促进了土壤N_2O的释放,并在第1 d达到最大值,分别为4 039.85μg N_2O-N·kg~(-1)·d~(-1)和2 533.44μg N_2O-N·kg~(-1)·d~(-1);添加纤维素和只施秸秆处理降低了N_2O释放。施入碳源增加了CO_2释放,顺序为纤维素淀粉葡萄糖果胶秸秆木质素。培养结束后土壤中铵态氮几乎消耗完全,除添加葡萄糖处理外,其他施碳土壤的硝态氮含量均有所增加。在培养前3d,土壤NH~+_4和NO~-_3总含量与N_2O释放量显著相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号