首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixed tree cropping systems have been proposed for sustainable nutrient management in the humid tropics. Yet, the nutrient interactions between intercropped trees have not been addressed sufficiently. In the present study we compare the temporal and spatial patterns of the uptake of applied 15N by four different tree crops in a mixed tree cropping system on a Xanthic Ferralsol in central Amazônia, Brazil, during one year. Most of the N uptake occurred during the first two weeks. Very little N was recovered by peach palm (Bactris gasipaes), more by cupuassu (Theobroma grandiflorum) and annatto (Bixa orellana) and most by Brazil nut (Bertholletia excelsa). Due to tree pruning the total accumulation of applied 15N in the above-ground biomass of annatto decreased throughout the year. It remained constant in cupuassu and peach palm and increased in Brazil nut. Brazil nut showed an extensive root activity and took up more fertilizer N applied to neighboring trees than from the one applied under its own canopy in contrast to the other three tree crops. Therefore, trees with wide-spread root systems may not need to receive N fertilizer directly but can take up N applied to other trees in the mixed cropping system. This means that such trees may effectively decrease N leaching when intercropped with trees that have dormant periods or places with low N uptake, but also exert considerable resource competition.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
The long-term fate of fertilizer N in forest ecosystems is poorly understood even though such information is critical for designing better forest fertilization practices. We studied the distribution and recovery of 15N (4.934 atom% excess)-labelled fertilizer (applied as urea at 200 kg N ha−1) 10 years after application to a 38–39-year-old Douglas-fir (Pseudotsuga menzeisii (Mirb.) Franco) stand in coastal British Columbia. The urea was applied in the spring (May 1982) or fall (November 1982). Sampling was conducted in October 1992, and we found that after 10 years, there were few differences between the fall and spring fertilizer applications in total N and 15N distribution within the tree and forest ecosystem. On average total fertilizer-N recovery was 59.4%; about 14.5% of the applied-N was recovered in the trees including coarse roots, with foliage containing 41% of the labelled-N recovered in the aboveground tree biomass. Tissue 15N remained mobile and could be transferred to new growth. Soil recovery was 39.8%, which had decreased from 57.0% at a previous 1-year sampling, with an average loss of 3.0% per year from the mineral soil and 3.7% from the litter layers. However, it appears that there was little continuing tree uptake. While short-term effects of fall vs. spring urea application were previously reported, there were no long-term effects on either stand productivity or fertilizer use efficiency, suggesting that if fertilization is properly done, timing of fertilization is not a critical issue in terms of maximizing fertilizer use efficiency for the coastal Douglas-fir forest we studied. Our results also highlight the high capacity of this ecosystem to retain externally applied inorganic N over the long-term, the importance of maximizing nitrogen uptake in the first year, and also of the continuing need to develop new approaches to overcome the generally low efficiency of forest N fertilization.  相似文献   

3.
The suitability of sesbania (Sesbania rostrata) as green manure for lowland rice was evaluated in the Inland Valley Swamp (IVS) of Sierra Leone, and attempts were made to identify appropriate methods of its management in combination with urea. Sesbania — rice intercropping and sesbania — rice rotation treatments were compared with 60 kg N ha–1 applied in two splits and 30 kg N ha–1 as basal or top dressed to rice grown in the two cropping systems. The 15N isotope dilution technique was used to quantify N uptake from the green manure and urea and its utilization by rice. Rotating 40–50 days old sesbania two days prior to transplanting and top dressing with 30 kg N ha–1 as urea at nine weeks after transplanting gave highest rice grain yield (121% over the control without sesbania and urea). However intercropping sesbania with rice tended to increase N uptake and N fertilizer utilization more than the rotation treatments. The higher grain yield of rice in rotation despite lower N uptake than intercropping shows that other effects than only N explain the beneficial effect of sesbania on rice.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
In a multi-strata agroforestry system in the central Amazon near Manaus, we studied the root activity distribution of different fruit trees and a legume cover crop in comparison to monocultures and a secondary forest site. Uptake of applied 32P, 33P and 15N from 0.1, 0.6 and 1.5 m depth was compared in both the dry and wet season. The results obtained with 32P were similar to those with 15N but showed a higher variability, probably due to the lower mobility of P than N in soil and thus the labeling of a smaller soil volume with 32P. During the dry season, topsoil root activity measured with 15N was around 80% for all species with the exception of the palm tree Bactris gasipaes Kunth., which had a higher uptake from 0.6 m (50%) than from 0.1 m (30%). The subsoil (1.5 m) root activity was higher, when Bactris was not regularly cut for heart of palm harvest but grown for fruit production. Additionally, relative subsoil root activity of Theobroma increased and topsoil root activity of both Bactris and Theobroma decreased when intercropped in comparison to the monoculture. During the rainy season, the topsoil tree root activity slightly increased attributable to increasing water availability near the soil surface. The lowest isotope enrichment was noted for the secondary forest trees despite their low above ground biomass. The magnitude of the isotope enrichment was related to the foliar P and less pronounced to the foliar N contents, indicating higher nutrient cycling for nutrient-rich plant species. Despite the significant subsoil root activity (1.5 m) there was little evidence that large amounts of nutrients below 1 m depth can be recycled by the investigated tree species. More important may be a rapid recycling of nutrients from 0–1 m depth.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   

6.
Diverse kinds of fast growing multipurpose trees are traditionally grown as support trees (standards) for trailing black pepper vines in the humid tropics of India. Apart from differential black pepper yields, such trees exhibit considerable variability to accumulate biomass, carbon and nutrients. An attempt was made to assess the biomass production, carbon sequestration potential (tree + soil) and nutrient stocks of six multipurpose tree species (age: 22 years) used for trailing black pepper vines (Acacia auriculiformis, Artocarpus heterophyllus, Grevillea robusta, Macaranga peltata, Ailanthus triphysa and Casuarina equisetifolia). Results indicate that G. robusta showed the highest total biomass production (365.72 Mg ha?1), with A. triphysa having the least value (155.13 Mg ha?1). Biomass allocation among tissue types followed the order stemwood > roots > branchwood > twigs > leaves. Total C stocks were also highest for G. robusta (169 Mg C ha?1), followed by A. auriculiformis (155 Mg C ha?1). Mean annual carbon increment also followed a similar trend. Among the various tissue fractions, stemwood accounted for the highest N, P and K stocks, implying the potential for nutrient export from the site through wood harvest. All the support trees showed significantly higher soil carbon content compared to the treeless control. Soil N, P and K contents were higher under A. auriculiformis than other species. Nitrogen fixation potential, successional stage of the species, stand age and tree management practices such as lopping may modify the biomass allocation patterns and system productivity.  相似文献   

7.
The application of Long Term fire Retardants (LTRs) for forest fire prevention and/or suppression purposes can result in chemicals leaching, from soil to the drainage water, during the annual rain fall period. In leachates, large concentrations of nitrogen (N), one of the major components of LTRs, could affect the groundwater quality. N leaching due to the application of a nitrogen phosphate based LTR was studied in laboratory microcosms. The concentrations of nitrate (NO 3 ? -N) and ammonium nitrogen (NH 4 + -N) were measured in the resulting leachates from pots with forest soil and pine seedlings (Pinus halepensis) alone and in combination with fire. Up to 30% of the total N in the retardant was lost to leaching, primarily as NO 3 ? -N. The vegetation seems to decrease to some extent the N leaching. The N leaching from treated pots with a burnt tree is lower compared with that from treated pots with a living tree, due to the partial N volatilization during the fire. Although this is a laboratory study, these results may be considered as rough indications of LTR environmental implications, due to the leaching of a significant part of the retardant’s N into groundwater.  相似文献   

8.
This study measured the amount of uptake of labeled nitrogen (15N) of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm) seedlings, at three different phenological stages, in a growth chamber experiment. Thirty days after 15N application, the amount of 15N recovered in seedlings as a percentage of the total 15N fertilizer applied was 4% in early spring, 43% in summer and 33% in autumn. The total 15N recovered in the plant–pot system ranged from 80 to 96%, and is higher than reported in other studies. Total 15N recovered from the pot compartment alone ranged from 48 to 95%, suggesting that substantial pools of N remain in the soil. Results suggest that low 15N uptake in the spring was associated with limited development of new root as a result of low spring soil temperatures. The lack of unsuberized roots in spring could be a key factor decreasing the effectiveness of early spring fertilization in the boreal forest.  相似文献   

9.
Patterns of fine root biomass, production, and distribution were estimated for pure stands and mixtures of three-year-old loblolly pine (Pinus taeda L.) with red maple (Acer rubrum L.) or black locust (Robinia pseudoacacia L.) on the Virginia Piedmont to determine the role of fine roots in interference between pine and hardwood tree species. Estimates were based on amounts of live and dead fine roots separated from monthly core samples during the third growing season after planting. Live and dead fine root biomass and production varied by species, but mixtures of loblolly pine and black locust generally had greater fine root biomass and fine root production than pure stands or loblolly pine-red maple mixtures. Hardwood species had greater live fine root biomass per tree in mixtures with pine compared to pure stands. Greater live fine root biomass in pine-locust stands may be attributed to differential utilization of the soil volume by fine roots of these species. For all stands, approximately 50% of live five root biomass was located in the upper 10 cm of soil.  相似文献   

10.
Wood ash addition to forest soils can balance exported nutrients by tree harvesting and decrease soil acidity, but its effectiveness in Mediterranean areas has been scarcely evaluated. The aim of the present study was to assess the effects of wood ash application on soil C and N dynamics, nutrient leaching and fertility in a pine stand. Treatments were loose and pelleted ash application (11 Mg ha?1), alone or combined with N fertilizer, and a control treatment. Nutrient leaching and soil chemical and biological properties were periodically evaluated for a 30-month period. Wood ash increased leaching of base cations (Ca, Mg, Na and K) and P, mainly at the beginning of the study. The effect was more pronounced for the loose formulation. As a consequence, a positive effect on soil nutrient availability (exchangeable base cations and extractable P) and soil acidity reduction was observed for the loose formulation in the 0–10-cm soil layer. Carbon and N dynamics were only affected when ash was applied with N fertilizer, which enhanced CO2 flux during the study period.  相似文献   

11.
Quantitative understanding of nutrient uptake by competing plants with different root systems can be a beneficial tool in designing the nutrient management strategies for competing plant environments. A field study was conducted at two sites (Alfalfa and Pasture site) near Meadow Lake, Saskatchewan, Canada to investigate the effect of weed competition on the growth and nitrogen (N) uptake by hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker) using the Soil Supply and Nutrient Demand (SSAND) model. Hybrid poplar was grown with and without weeds (mainly dandelion (Taraxacum officinale F.H. Wigg.) and quackgrass (Elymus repens (L.) Gould) for 50, 79 and 100 days. Above-ground and below-ground growth of hybrid poplar was adversely affected by the presence of weeds at both sites. At the end of the experimental period, hybrid poplar in the control treatment took up 15.8 and 15.7 mmol N plant−1 while seedlings in the weed treatments accumulated only 1.7 and 2.1 mmol N plant−1 at the Pasture and Alfalfa sites, respectively. The SSAND model predictions for hybrid poplar N uptake at the Pasture site were in close agreement with measured N uptake in the control treatment (slope = 0.95-0.98). Model predictions for the Alfalfa site underestimated N uptake in the control treatment compared to measured values (slope = 0.75-0.77). The SSAND model greatly underestimated N uptake by both hybrid poplar and weeds grown in the weed treatment. Including N mineralization as a model input also did not improve the N uptake predictions; however, including changing soil water content greatly improved the prediction of N uptake by both hybrid poplar and weeds. Results from this study suggest that weed control is an essential practice to successful establishment of hybrid poplar plantations. Furthermore, the SSAND model can be a potentially useful tool for enhancing our understanding of plant nutrient uptake under field conditions where the dynamic nature of soil moisture and mineralization processes influence plant growth.  相似文献   

12.
The effects of root exclusion and planted tree species on soil nitrogen (N) dynamics were examined at two plantations, one planted with Japanese cedar and the other with Japanese cypress. We set up ten 1 × 1 × 0.2-m-deep trenched sites and ten untrenched control sites at each plantation. We measured the pool size and leaching of inorganic N at each site for 2 years and the net N mineralization 1 and 2 years after trenching. Despite similar soil conditions, the cedar plantation showed higher net N mineralization than the cypress plantation. Stopped tree uptake of N was expected to cause an increased pool size and leaching of inorganic N at the trenched sites. Nevertheless, we found no significant increase in those variables at both plantations. The trenched cypress sites showed no decrease in the net N mineralization during the 2 years after trenching. However, the net nitrification at the trenched cypress sites increased remarkably at the deeper horizons in comparison with that at the control sites. Enhanced nitrification might result from improved ammonium availability through root exclusion. Net N mineralization at the trenched cedar sites decreased more than 60% compared with that at the control sites 2 years after trenching. Higher nitrification potential at the cedar plantation and enhanced nitrification potential at the trenched cypress sites never resulted in increased leaching of N, due to added fine root litter which acted as an immobilization agent for excess N, thus preventing N loss.  相似文献   

13.
The distribution and quantitative recovery of fertilizer N were determined in three 29‐ to 43‐year‐old stands of Scots pine, located in western Uppland, Central Sweden. The experimental technique involved was based on the use of 15N‐labelled fertilizer materials and non‐trenched microplots of special design. The standard dose of nitrogen applied was 160 kg N ha‐1. The primary topics examined were (1) fertilizer nitrogen accumulation in trees and in the soil system as influenced by nitrogen source, nitrogen application rate, time of application during the growing season, granule size of the nitrogen material, and method of placement, (2) distribution of labelled N within the tree (different organs of the tree), and (3) redistribution of accumulated N in the tree over an observation period of two to three growing seasons. When quantified at the end of the second growing season, the labelled N accumulation in trees, concerning plots treated with calcium nitrate or ammonium nitrate, averaged 36% (SD=7). The accumulation resulting from split doses did not differ significantly from that resulting from a single‐dose application, nor did granule size of the nitrogen materials have any significant effect on accumulation. For urea source of nitrogen, the recovery figure was markedly lower, averaging 28% (SD=6). When expressed as a percentage, the accumulation in trees was not significantly different for 40 and 160 kg nitrogen application rates. In one of the experiments application timing during the growing season proved to be an important factor determining the extent of fertilizer nitrogen accumulation in trees. The figures for total recovery of labelled nitrogen in above‐ground parts of trees and in soil, when restricting measurements to the forest floor and the 0–32 cm mineral soil, ranged from 46 to 84%, with an average of 60%. The recovery was lowest for a treatment with calcium nitrate, when applied relatively late in the growing season, and highest for a split application of urea. Treatments with urea source of nitrogen were characterized by a high accumulation of immobilized N in the organic LFH layer of the soils. Recovery figures exceeded 82 % for a 40‐kg N dose of nitrogen, regardless of the nitrogen source.  相似文献   

14.
Theobroma cacao seedlings were grown alone (TCA) or associated with saplings of N2-fixing shade trees Gliricidia sepium and Inga edulis in 200 l of 15N labelled soil within a physical root barrier for studying direct nitrogen transfer between the trees and cacao. Root:shoot partitioning ratio for sapling total N was lower than biomass root:shoot ratio in all species. Sapling total 15N was partitioned between root and shoot in about the same ratio as total N in cacao and inga but in gliricidia much higher proportion of 15N than total N was found in roots. Thus, whole plant harvesting should be used in 15N studies whenever possible. Average percentage of fixed N out of total tree N was 74 and 81% for inga estimated by a yield-independent and yield-dependent method, respectively, and 85% for gliricidia independently of estimation method. Strong isotopic evidence on direct N transfer from trees to cacao was observed in two cases out of ten with both tree species. Direct N transfer was not correlated with mycorrhizal colonisation of either donor or receiver plant roots. Direct N transfer from inga and gliricidia to cacao is conceivable but its prevalence and the transfer pathway via mycorrhizal connections or via reabsorption of N-rich legume root exudates by cacao require further study. Competition in the restricted soil space may also have limited the apparent transfer in this study because the trees accumulated more soil-derived N than cacao in spite of active N2 fixation.  相似文献   

15.
The fate of high and equally distributed ammonium and nitrate deposition was followed in a 72-year-old roofed Norway spruce forest at Solling in central Germany by separately adding 15NH4+ and 15NO3 to throughfall water since November 2001. The objective was to quantify the retention of atmospheric ammonium and nitrate in different ecosystem compartments as well as the leaching loss from the forest ecosystem. δ15N excess in tree tissues (needles, twigs, branches and bole woods) decreased with increased tissue age. Clear 15N signals in old tree tissues indicated that the added 15N was not only assimilated to newly produced tree tissues but also retranslocated to old ones. During a period of over 3-year 15N addition, 30% of 15NH4+ and 36% of 15NO3 were found in tree compartments. For both 15N tracers, 15% of added 15N was found in needles, followed by woody tissues (twigs, branches and boles, 7–13%) and live fine roots (7%). The recovery of 15NH4+ and 15NO3 in the live fine roots differed with soil depth. The recovery of 15NH4+ tended to be higher in the live fine roots in the organic layer than in the upper mineral soil. In the live fine roots in deeper soil, the recovery of 15NO3 tended to be higher than that of 15NH4+. Soil retained the largest proportion of 15N, accounting for 71% of 15NH4+ and 42% of 15NO3. Most of 15NH4+ was recovered in the organic layer (65%) and the recovery decreased with soil depth. Conversely, only 8% of 15NO3 was found in the organic layer and 34% of 15NO3 was evenly distributed throughout the mineral soil layers. Nitrate leaching accounted for 3% of 15NH4+ and 19% of 15NO3. Only less than 1% of the both added 15N was leached as DON. These results suggested that trees had a high contribution to the retention of atmospheric N and soil retention capacity determined the loss of atmospheric N by nitrate leaching.  相似文献   

16.
Reduction in forage production (FP) under trees in the humid tropics is well known, but information on how different levels of nitrogen (N) fertilizer influence FP under trees is meager. The present study reports effects of four N fertilizer levels (0, 60, 80 and 120 kg ha−1 N) on net soil N mineralization rate (NMR) and soil moisture (SM), FP, shoot biomass/root biomass ratio (SB/RB), N concentration in SB, N uptake and nitrogen use efficiency (NUE) of three grasses [guinea (Panicum maximum Jacq.), para (Brachiaria mutica (Forssk) Stapf) and hybrid-napier (Pennisetum purpureum Schumach.)] under three canopy positions [under canopy (UC, representing high shade), between canopy (BC, representing low shade) and open] of coconut trees (Cocos nucifera L.) in a coconut based silvopastoral system in the humid tropical climate of South Andaman Island of India. The study was performed for two annual cycles (2005–2006 and 2006–2007). The hypotheses tested were: (1) FP would decline under tree shades, both in N fertilized as well as no N fertilized conditions, when SM was not growth limiting in the open. However, amount of decline in the FP would depend on grass species and intensity of shades i.e., higher was the shade greater would be the decline; (2) N fertilizer would increase FP under tree shades, but the increase depended on grass species, intensity of shades and amount of N applied. Amount of N applied, however, would not annul the shades effects when SM was not growth limiting in the open. The study revealed that the tree reduced light 59% under UC and 32% under BC positions, but the N fertilizer levels increased NMR by 11–51% under UC and 3–44% under BC positions compared to the open. SM did not differ across the canopy positions. Under all situations, FP of all grasses declined under UC (47–78%) and BC (18–32%) positions compared to the open; the decline was greater in Hybrid-napier than Guinea and Para grasses. Forage production of all grasses increased with N fertilizer increments under all canopy positions reaching 32 t ha−1 dry matters for hybrid-napier at 120 kg ha−1 N in the open. Both guinea and para grasses outyielded hybrid-napier grass under UC but not under BC or in the open. N concentration in the forage (SB) also increased as N fertilizer level increased. These observations support our hypotheses and suggest that forage production under coconut palms can be increased by the application of N fertilizer with both guinea and para grasses being more productive than hybrid-napier grass under the high shade. Where light conditions are better, hybrid-napier would produce more forage than the other species.  相似文献   

17.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

18.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   

19.
The nitrogen (N) cycling was elucidated in a 40-year-old subtropical evergreen broad-leaved forest dominated by Cyclobalanopsis glauca growing on red soil in Zhejiang Province, East China. The concentrations of N in the representative species ranged from 0.49% to 1.64%, the order of which in various layers was liana and herb layers > understory layer > tree and subtree layers; in various organs was leaf > branch > root > trunk; and aboveground parts > underground parts. The sequence of the concentrations of N in C. glauca was understory > tree > subtree layer; young and high-growing > old organs; reproductive > vegetative organs. Seasonal dynamics of the concentrations of N in C. glauca in the tree and subtree layers was comparatively stable. It was lower in autumn (October) in root, branch, and leaf in the tree layer, and low in January in the understory. There was no evident change in regularity of the concentrations of N in varying diameter classes. The concentrations of N in the litterfall, precipitation, throughfall, litter layer, and soil were 0.74%–2.30%, 0.000,038%, 0.000,09%, 1.94%, and 0.59%, respectively. The standing crop of N in the plant community was 1,025.28 kg/hm2, accumulation in the litter layer was 224.88 kg/hm2, and reserve in the soil was 55,151 kg/hm2. Annual retention of N was 119.47 kg/hm2, return was about 84.13 kg/hm2, among which litterfall was 78.49 kg/hm2 and throughfall, 5.64 kg/hm2. Annual absorption of N was 203.60 kg/hm2. Annual input of N through incident precipitation was 4.88 kg/hm2. Compared with other forest types, cycling rate of N in the community was lower than in deciduous broad-leaved forests, rain forests, and mangroves, and was moderate in evergreen broad-leaved forests. N use efficiency of this forest was moderate among the forest types cited. According to the characteristics of the biocycle of phosphorous, it was concluded that N availability in the soil of this forest was not lower, and phosphorous not N was the limiting factor in the growth of plants in this community. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 740–748 [译自: 生态学报, 2005, 25(4): 740–748]  相似文献   

20.
Supplemental irrigation is essential to increase tree productivity in dry areas to fulfill the local needs. One-year-old Eucalyptus camaldulensis Dehnh plants were planted in July 1998 and supplemental irrigation was provided at 36.2 mm (I1), 26.5 mm (I2), 20.2 mm (I3), 18.1 mm (I4), and live saving (I5). Frequency and quantity of irrigation increased with an increase in irrigation level enhancing plant height, collar diameter, and biomass. These variables were highest at I1, but water use efficiency (WUE) was highest at I2. Dry biomass production increased from 1.18 kg plant?1 at I5 to 13.75 kg plant?1 at I1 at 24-month age. Biomass allocation to root increased from I1 to I5 but it was at the expense of leaf and branches. Height, collar diameter, dry biomass, and nutrient uptake indicated a non-linear increase with total quantity of water. Partitioning of N, Mg, Fe, Mn, Cu, and Zn was greater to stem; and those of P, K, and Ca was greater to leaf than to the other parts. Conclusively, I3 and I4 levels supported establishment whereas I2 level was best for growth and productivity of E. camaldulensis plants in dry areas. The I1 level could be tried to increase water use and reduce salinity buildup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号