首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
Studying on spatial and temporal variation in soil organic carbon (SOC) is of great importance because of global environmental concerns. Tillage-induced soil erosion is one of the major processes affecting the redistribution of SOC in fields. However, few direct measurements have been made to investigate the dynamic process of SOC under intensive tillage in the field. Our objective was to test the potential of 137Cs and 210Pbex for directly assessing SOC redistribution on sloping land as affected by tillage. Fifty plowing operations were conducted over a 5-day period using a donkey-drawn moldboard plow on a steep backslope of the Chinese Loess Plateau. Profile variations of SOC, 137Cs and 210Pbex concentrations were measured in the upper, middle and lower positions of the control plot and the plot plowed 50 times. 137Cs concentration did not show variations in the upper 0–30 cm of soil whereas 210Pbex showed a linear decrease (P < 0.05) with soil depth in the upper and middle positions, and an exponential decrease (P < 0.01) at the lower position of the control plot. The amounts of SOC, 137Cs and 210Pbex of sampling soil profiles increased in the following order: lower > middle > upper positions on the control plot. Intensive tillage resulted in a decrease of SOC amounts by 35% in the upper and by 44% in the middle positions for the soil layers of 0–45 cm, and an increase by 21% in the complete soil profile (0–100 cm) at the lower position as compared with control plot. Coefficients of variation (CVs) of SOC in soil profile decreased by 18.2% in the upper, 12.8% in the middle, and 30.9% in the lower slope positions whereas CVs of 137Cs and 210Pbex decreased more than 31% for all slope positions after 50 tillage events. 137Cs and 210Pbex in soil profile were significantly linearly correlated with SOC with R2 of 0.81 and 0.86 (P < 0.01) on the control plot, and with R2 of 0.90 and 0.86 (P < 0.01) on the treatment plot. Our results evidenced that 37Cs and 210Pbex, and SOC moved on the sloping land by the same physical mechanism during tillage operations, indicating that fallout 137Cs and 210Pbex could be used directly for quantifying dynamic SOC redistribution as affected by tillage erosion.  相似文献   

2.
沿坝地区天然次生林对降雨再分配的影响   总被引:2,自引:0,他引:2  
为了探究天然次生林对降雨再分配的过程,通过对沿坝地区的北沟林场内天然次生林进行穿透降雨、冠层截留和树干径流3个方面进行监测,结果表明:(1)穿透雨量和林冠截留占林外降雨量的比例比较大,树干径流量的比例则非常小,分别为59.46%,37.33%,3.21%。(2)穿透雨量和林外降雨呈现线性关系(R2=0.980 4),林冠截留量与林外降雨量也具有明显的幂函数关系(R2=0.823 4),树干径流与林外降雨量具有明显的线性相关关系(R2=0.909 8),并且都达到了极显著水平(p < 0.01)。(3)根据穿透雨与林外降雨的方程y=0.8034x-1.7939,当林外降雨量高于2.23 mm时会产生穿透雨;依据林外降雨与树干径流的方程y=0.0552x-0.1981,当林外降雨高于3.58 mm时会产生树干径流;林冠在降雨再分配过程中起到了很重要的作用,形成了二次降雨。  相似文献   

3.
Interrill erosion depends on soil detachment and sediment transport, which are affected by seal formation and runoff. The objective of this study was to investigate the effect of wetting rate (WR) on runoff and soil erosion in semi-arid Israeli soils varying in clay content and exchangeable sodium percentage (ESP). Six soils, ranging in clay content between 90 and 680 g kg−1 and ESP between 0.9 and 20, were packed in 0.2 m×0.4 m trays, wetted at 3 WRs (2, 8, or 64 mm h−1), and thereafter exposed to 60 mm of distilled water rain in a laboratory rainfall simulator. Under non-sodic conditions (ESP<2), highest runoff and erosion were obtained from loam (220 g kg−1 clay and 350 g kg−1 silt) which was ascribed to its high susceptibility to seal formation, runoff and detachability. Runoff and erosion increased with an increase in ESP and WR. The effect of WR on runoff and erosion was negligible in loamy sand and generally increased with an increase in clay content. In clay soils (>600 g kg−1 clay), WR played a greater role in determining runoff and erosion compared with raindrop impact. A linear type dependence existed between erosion and runoff for soils with ESP<5 or when slow WR was used. For high ESP soils, or when medium or fast WR were used, an exponential type relation described better the dependence of erosion on runoff. It is suggested that for sodic soils or for conditions favoring aggregate slaking, runoff level and its velocity were high enough to initiate rill erosion that supplemented raindrop detachment in markedly increasing erosion.  相似文献   

4.
Immobilization of mineral N induced by decomposition of roots of four tropical forage species (Stylosanthes guianensis, Centrosema sp., Andropogon gayanus and Brachiaria decumbens) in an Oxisol was studied under laboratory conditions. Root materials had a high lignin content (12–20%) but total polyphenol content was small (<0.8%). Roots, at 2.5 and 5.0 g kg−1, and 10 mg N kg−1 of -labelled ammonium sulphate (20.3 at.%) were thoroughly mixed with the soil which was maintained at field capacity for 117 d. Decomposition of the roots (as monitored by CO2 evolution) was initially rapid and the legume materials (S. guianensis, Centrosema sp.) with their lower C-to-N ratio and lignin content, decomposed more quickly than the grass roots (A. gayanus, B. decumbens). After 8 d of incubation the rate of CO2 evolution decreased and was similar for all root materials. CO2 evolution from the decomposing roots in all cases fitted closely (R2>0.99) a double exponential equation defining two compartments of root carbon of differing susceptibility to decomposition. The equation predicted that between 43% (Centrosema) and 62% (Brachiaria) of root carbon would not be decomposed even at infinite time under incubation conditions. Mineral N in the soil was immobilized rapidly at the start of the incubation, and the immobilization was greatest with the higher rate of application of root material. Although the C-to-N ratio of legume roots was narrower their higher degradability stimulated greater immobilization of soil mineral N than the grass roots. The results are discussed with reference to N immobilization and carbon sequestration in planted pastures of tropical South America.  相似文献   

5.
Long-term cultivation impacts soil properties. During the early 1920s a study comparing non-cultivated and cultivated soils was done in eastern SD (Beadle, McCook, Minnehaha, and Union Counties), USA. The objectives of the current study were to: (1) determine the long-term (>80 years) impact of cultivation on selected soil properties; and (2) establish baseline soil data that can be used for future comparisons. Sample sites were located in well-drained summit and upper backslope positions. These topographic positions are strongly influenced by erosion processes from tillage, wind, and water. Previous studies at other locations in the region suggest that one might expect a loss of 10–20 cm of soil in >80 years of cultivation at these topographic positions. In the early 1920s the soils were tested for carbon (C) (total, organic, inorganic), total nitrogen (N), total sulfur (S), total calcium (Ca), total phosphorus (P), total potassium (K), and total magnesium (Mg). The 1920s study sites were resampled at 0–15, 15–50, and 50–100 cm depths and analyzed for C (total, organic, inorganic), N (total, nitrate-N), extractable P, extractable K, delta N (15N/14N or δ15N) for total N, delta C (13C/12C or δ13C) for total C, and pH. Long-term cultivation (>80 years) in the northern Great Plains of the United States has caused many significant reductions in surface soil (0–15 cm) extractable P, extractable K, surface pH, total C, organic C, total N, and δ15N for total N. In addition, the organic C to total N ratio for the 15–50 cm depth of cultivated soils was significantly lower when compared to non-cultivated soils. Cultivation caused significant increases in nitrate-N, delta C, inorganic C, and in the total C to total N and inorganic C to total N ratios (15–100 cm depths). Soil properties varied significantly with increasing soil depth. Soil pH, δ13C for total C, inorganic C, total C to total N ratio, and inorganic C to total N ratio increased significantly as soil depth increased. Nitrate-N, extractable P, extractable K, δ15N for total N, organic C, and total N decreased significantly as soil depth increased. Soil carbon changes at the sample sites are a combined result of differences in the reference surface elevation, carbon mineralization, and redistribution of carbon due to erosion. Changes in soil nutrient levels reflect crop removal, leaching, erosion, and pedogenic processes.  相似文献   

6.
7.
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dCsail(t)/dt = −kCsoil(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where Csoil(t) is the available labile soil C (g m−2) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (FNT) and tilled (FT) fluxes, which is: FT=a1FNT ea2t, where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R2), index of agreement and model efficiency, with R2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a2) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a1). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a1) and −1.52 × 10−2 and 2.2 × 10−2 day−1 (a2). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters.  相似文献   

8.
The effect of winter weed control (WWC) management on 14C-atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) mineralization was investigated in an Entic Haplustoll in Argentina. Three WWC managements were selected: Chemical Fallow (CF) and Cereal Cover Crop (CCC), both under no-tillage, and Reduced Tillage (RT) with chisel and moldboard plow. Soil was sampled at two depths: 0–5 and 5–10 cm, to evaluate the soil stratification induced by the tillage system. To distinguish differences in atrazine degradation in soils with and without previous history of atrazine application two crop sequences were selected: continuous soybean [Glycine max L., Merr.] (CS) without previous atrazine exposure, and soybean–maize (Zea mays L.) rotation (SM) with atrazine application every winter and in alternate springs. The release of 14C-CO2 during laboratory incubations of soils treated with ring labelled 14C-atrazine was determined. Soil organic matter (SOM) distribution was determined with depth and among three soil size fractions: 200–2000 μm, 50–200 μm and <50 μm. Previous atrazine application enhanced atrazine degrading microorganims. Atrazine mineralization was influenced by both WWC management and the tillage system. Chemical fallow showed the highest atrazine mineralization in the two crop sequences. Depth stratification in atrazine degradation was observed in the two WWC treatments under the no-tillage. Depth stratification in the content of soil organic C and relative accumulation of organic C in coarsest fractions (200–2000 and 50–200 μm) were observed mainly in no-till systems. Depth stratification of atrazine degrading activity was mainly correlated to the stratification of fresh organic matter associated with the coarsest fractions (200–2000 μm). Atrazine persistence in soil is strongly affected by soil use and management, which can lead to safe atrazine use through selection of appropriate agricultural practices.  相似文献   

9.
Field observations have shown that root residues maintain root-adhering soil for several months after harvest. The aim of this work was to compare post-harvest effect of Amaranthus hypochondriacus (amaranth), Phaseolus vulgaris (common bean) and Zea mays (maize) roots on root-adhering soil, aggregation and organic carbon content. The experimental site was located on a volcanic sandy soil (Typic Ustifluvent) in the Valley of Mexico. In 1999 and 2000, maize had the highest root mass (92 and 94 g m−2) and the highest root-adhering soil (9051 and 5876 g m−2) when a root–soil monolith of 0.20 m × 0.20 m × 0.30 m was excavated after harvest. In contrast, bean roots (2 and 5 g m−2) had only 347 and 23 g m−2 of adhering soil per monolith in each year. Amaranth had intermediate values between maize and bean. Dry soil aggregate classes (<0.25, 0.5, 1, 2, 5 and >5 mm) were similarly distributed among the three species. The sum of the three soil macro-aggregates classes >1 mm was 0.1 g g−1 in both years. Neither water stability of the 2–5 mm aggregates (0.05–0.09 g g−1) nor soil organic C (SOC) in three aggregate classes (<0.25, 1–2 and >5 mm; mean 14.6 mg g−1) was affected by species (P < 0.05) in either year. Observations of thin sections (10× and 40×) revealed absence of macro-aggregates under maize. Soil compaction was attributed to high mass of maize roots in the sampled soil volume. Root systems sampled after harvest had the capacity to maintain a well structured soil mass, which was proportional to root mass. Root-adhering soil measured in the field could be used to select species promoting soil adhesion by roots.  相似文献   

10.
M.R. Goe   《Soil & Tillage Research》1999,49(4):1027-300
Human population pressure has forced smallholder farmers in some areas of the central plateau region of the Ethiopian highlands to cultivate plots located on slopes or hillsides having varying amounts of stone cover. The objectives of this pilot study were to determine if slope and(or) stone cover influenced tillage operations on smallholder farms in the Debre Birhan area of the Ethiopian highlands, and to examine the relationship between different soil/tillage-related factors and draft of the indigenous single-tined ard (maresha). This paper also briefly describes the traditional systems of cropping and soil management, and provides data on selected physical and chemical properties of soils found in the study area. A land classification (LC) system was developed to categorize plots according to the slope and stone cover. Surface stone cover of plots was calculated and a method of estimating subsurface stones was tested. Tillage measurements included plowing frequency or number (PN) per area per annum, soil moisture tension, plowing depth, furrow “wedge” of soil moved, area plowed, contour angle, and the speed of travel and pulling force exerted by oxen. Plots were located on slopes ranging from 0% to 23%. Degree of slope was a key factor in determining the acuteness of angle of the contour at which plowing is done prior to seed covering, but had no significant effect on maresha draft. Stone cover of plots ranged up to 27%, with individual stones moved by the ard weighing up to 2.5 kg. Plowing depth ranged from 10.1–15.3 cm for all PN across LC. Oxen travelled at speeds of 0.35–0.58 m s−1. Mean values for draft of the maresha across LC ranged from 0.83–1.04 kN. Farmers plowed from 0.10–0.15 ha during a 5–6 h work period, irrespective of LC or PN. Soil moisture tension (range 16–33 kPa) was found not to have a significant effect on draft, due to tillage being carried out prior to the major and minor rains. Percent stone cover explained very little of the variation in implement draft (R2=0.10). Adding stone weight to the model increased R2 slightly (0.22), but significance was low (P<0.16). Furrow wedge of soil displaced by the ard head accounted for most of the variation in draft of the maresha across all LC and PN (R2=0.75, P<0.008). The design and construction of the maresha allows it to be used equally well for tillage operations on plots having minimal or high stone cover which may be located on flat or gentle sloping land, or on steep hillsides.  相似文献   

11.
An understanding of the spatial distribution of soil erosion and deposition in a catchment is important for designing soil and water conservation measures. Traditional monitoring techniques provide limited information on the spatial patterns of erosion and deposition. The fallout radionuclide 137Cs was used to document rates and patterns of soil redistribution within a small (0.17 km2) gully catchment located near An'sai in Shaanxi Province, representative of the Loess Plateau of China. The local reference inventory was estimated to be 2266 Bq m−2 and the 137Cs inventories of 198 soil cores collected from the catchment, ranged from 0 to 3849 Bq m−2. The coefficient of variation of the inventories of the individual cores was 0.85, reflecting the complex pattern of 137Cs redistribution by soil erosion and deposition. Estimates of erosion rates derived from 137Cs measurement ranged from less than 25 to 150 Mg ha−1 year−1, with about 70% of the net soil loss from the catchment coming from the gully area. The 137Cs technique was shown to provide an effective means of documenting the spatial distribution of soil erosion and deposition within the small catchment.  相似文献   

12.
严重退化红壤植被恢复后有机质富集和团聚体稳定性   总被引:3,自引:0,他引:3  
ZHANG Bin  PENG Xin-Hua 《土壤圈》2006,16(6):699-706
Three types of soils: an eroded barren soil under continuous fallow, an eroded soil transplanted with Lespedeza shrubs (Lespedeza bieolor), and an eroded soil transplanted with camphor tree (Cinnaraomum camphora) were investigated to quantify organic matter pools and aggregates in reforested soils using physical fractionation techniques and to determine aggregate stability in relation to the enrichment of soil organic carbon (SOC). Soil organic matter (SOM) was physically fractionalized into free particulate organic matter (fPOM), occluded particulate organic matter (oPOM), and mineralassociated organic matter (mOM). The SOM was concentrated on the surface soil (0 5 cm), with an average C sequestration rate of 20-25 g C m^-2 year^-1 over 14 years. As compared to the eroded barren land, organic C content of fPOM, oPOM, and mOM fractions of the soil under Lespedeza and under camphor tree increased 12-15, 45-54, and 3.1-3.5 times, respectively. A linear relationship was found between aggregate stability and organic C (r^2 = 0.45, P 〈 0.01), oPOM (r^2 = 0.34, P 〈 0.05), and roOM (r^2 = 0.46, P 〈 0.01) of aggregates. The enrichment of organic C improved aggregate stability of the soil under Lespedeza but not that under camphor tree. However, further research is needed on the physical and biological processes involved in the interaction of soil aggregation and SOC sequestration in ecosystem.  相似文献   

13.
紫色丘陵区坡耕地生物埂土壤抗冲性研究   总被引:1,自引:0,他引:1  
本文以紫色丘陵区坡耕地4种典型生物埂为研究对象,采用原状土冲刷水槽法系统分析各种生物埂的土壤抗冲性。结果表明:(1)各种生物埂径流含沙量随着冲刷时间的继续出现“先急剧减小后平稳减小直至稳定”的变化趋势。在冲刷0~3 min,各生物埂土壤的径流含沙量均较大,随后径流含沙量平稳变化并趋于稳定。(2)生物埂抗冲刷过程可划分为快速冲刷阶段(0~3 min)、慢速冲刷阶段(3~20 min)和平稳冲刷阶段(20~28 min)3个阶段。生物埂土壤抗冲性随着冲刷时间的增长而不断增强,两者之间可用幂函数表示,其R2值在0.848 7~0.989 9。(3)各种生物埂土壤抗冲性随着坡度的增大而降低,两者关系达到极显著水平(R2=0.790 7,N=12,p < 0.001),可用幂函数表示。研究结果可为紫色丘陵区坡耕地生物埂措施合理布置及其稳定性评价提供科学依据。  相似文献   

14.
吸附反应时间对潮土中除草剂阿特拉津吸附行为的影响   总被引:2,自引:0,他引:2  
A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.  相似文献   

15.
Static uniaxial compression tests were performed on 26 agricultural soils from Quebec. Compression lines (bulk density vs. applied load) were obtained at different water contents for each soil previously sieved to 6 mm. For soils with clay contents less than 35%, the compression index (slope of the compression line) was best correlated with the mineral fraction of the soil (r = 0.75** with clay and r =−0.78** with sand). For clay-rich soils, the compression index was best correlated with organic carbon content (r = −0.75**). The bulk density under standard compression conditions (100 kPa load and 50% water saturation) was related to both clay (r = −0.80**) and organic carbon (r = −0.77**). This parameter was also highly correlated with the soil lower plastic limit (r = −0.95**) which corroborates the observation that the consistency limits can be good predictors of other mechanical properties which are more difficult to determine. Results suggested that both the mineral and the organic fractions have much influence on the compressive behaviour of Quebec agricultural soils.  相似文献   

16.
Soil redistribution by erosive processes is a serious problem for the potato growing areas of Prince Edward Island. Studies were conducted to evaluate soil loss for three major soil types under two different cropping systems, at catenary sequences with five slope positions, using the 137Cs tracer method. Adjacent forest catenas were sampled to provide baseline 137Cs levels. Soil loss over time (1960–1990) on a specific mass (kg m−2 yr−1) basis was calculated by comparing the 137Cs at the same slope positions for the cropping system and adjacent forest site. The effects of land clearing and long-term cultivation were to increase both the depth and density of the Ap horizon, and decrease the total 137Cs on an area basis, in comparison to the forested sites. The average 137Cs in the forested sites for all three soil types was 3133 Bq m−2. Catena average soil loss across all soil types and slopes, for the 1960–1990 time period, was 21 and 38 Mg ha−1 yr−1 for the pasture and crop rotation (potato) rotations, respectively. Shoulder slope positions tended to have the highest 137Cs loss, which was suggestive of tillage erosion.  相似文献   

17.
The effect of soil incorporations of lantana (Lantana spp.) biomass, an obnoxious weed, on physical environment of a silty clay loam soil (Typic Hapludalf) under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping was studied in a long-term field experiment conducted in a wet temperate region of north India. Fresh lantana biomass was incorporated into the plough layer at 10, 20 and 30 Mg ha−1 annually, 7–10 days before puddling. Plant-available water capacity (PAWC), non-limiting water range (NLWR) and NLWR:PAWC ratio were determined to characterize soil physical environment during wheat crop in the tenth cropping cycle.

Ten annual applications of lantana at 10, 20 and 30 Mg ha−1, increased organic carbon (OC) content over control by 12.6, 17.6 and 27.9% in 0–15 cm soil layer, and 17.1, 26.3 and 39.5% in 15–30 cm soil layer, respectively. The OC content in 0–15 and 15–30 cm soil layer of control plots was 11.1 and 7.6 g kg−1 soil. Bulk density decreased by 3–14% in 7.5–10.5 cm layer and 1–6% in 15–18 cm layer. Volumetric moisture contents at 10% air-filled porosity were 38.4, 40.0, 54.5 and 55.7% at 7.5–10.5 cm depth, and 31.4, 32.2, 33.9 and 34.6% at 15–18 cm depth corresponding to 0, 10, 20 and 30 Mg ha−1 lantana treatment, respectively. At 15–18 cm soil depth, volumetric moisture contents at 2 MPa soil penetration resistance were 26.9, 24.8, 23.0 and 19.6% in zero, 10, 20 and 30 Mg ha−1 lantana-treated plots, respectively. Lower soil water contents associated with 10% air-filled porosity and greater soil water contents associated with a limiting penetration resistance of 2 MPa resulted in a lower NLWR (4.3%) for control as compared to lantana-treated soil (7.4–15.1%). The PAWC showed slight increase from 12.9 to 13.4–14.9% due to lantana additions. The NLWR:PAWC ratio was also lower in control (0.33) as compared to lantana-treated soil (0.55–1.01). The NLWR was significantly and positively correlated with wheat grain yield (r=0.858**).  相似文献   


18.
Long-term field experiments are among the best means to predict soil management impacts on soil carbon storage. Soil organic carbon (SOC) and natural abundance 13C (δ13C) were sensitive to tillage, stover harvest, and nitrogen (N) management during 13 years of continuous corn (Zea mays L.), grown on a Haplic Chernozem soil in Minnesota. Contents of SOC in the 0–15 cm layer in the annually-tilled [moldboard (MB) and chisel (CH)] plots decreased slightly with years of corn after a low input mixture of alfalfa (Medicago sativum L.) and oat (Avena sativa L.) for pasture; stover harvest had no effect. Storage of SOC in no-till (NT) plots with stover harvested remained nearly unchanged at 55 Mg ha−1 with time, while that with stover returned increased about 14%. The measured δ13C increased steadily with years of corn cropping in all treatments; the NT with stover return had the highest increase. The N fertilization effects on SOC and δ13C were most evident when stover was returned to NT plots. In the 15–30 cm depth, SOC storage decreased and δ13C values increased with years of corn cropping under NT, especially when stover was harvested. There was no consistent temporal trend in SOC storage and δ13C values in the 15–30 cm depth when plots received annual MB or CH tillage. The amount of available corn residue that was retained in SOC storage was influenced by all three management factors. Corn-derived SOC in the 0–15 cm and the 15–30 cm layers of the NT system combined was largest with 200 kg N ha−1 and no stover harvest. The MB and CH tillage systems did not influence soil storage of corn-derived SOC in either the 0–15 or 15–30 cm layers. The corn-derived SOC as a fraction of SOC after 13 years fell into three ranges: 0.05 for the NT with stover harvested, 0.15 for the NT with no stover harvest, and 0.09–0.10 for treatments with annual tillage; N rate had no effect on this fraction. Corn-derived SOC expressed as a fraction of C returned was positively biased when C returned in the roots was estimated from recovery of root biomass. The half-life for decomposition of the original or relic SOC was longer when stover was returned, shortened when stover was harvested and N applied, and sharply lengthened when stover was not harvested and N was partially mixed with the stover. Separating SOC storage into relic and current crop sources has significantly improved our understanding of the main and interacting effects of tillage, crop residue, and N fertilization for managing SOC accumulation in soil.  相似文献   

19.
Irrigated rice fields account for 10–30% of global methane emissions. Rice plants ventilate the soil and enlarge the oxic–anoxic interface by their root system, thus supplying the necessary O2 to aerobic CH4 oxidizing bacteria (MOB). Rice plants (Oryza sativa type japonica var. Roma) were grown in microcosms in a greenhouse. The roots were sandwiched between two blocks of flooded rice field soil separated by a nylon gauze bag. A root mat developed which mimicked the dense root texture in the upper layer of a natural rice field. Flux measurements under oxic and anoxic conditions showed that CH4 was oxidized with a constant rate of 19% of the anoxically emitted CH4, suggesting that CH4 oxidation in the rhizosphere was at least sometimes limited by CH4 availability. Washed rice roots could both produce and oxidize CH4, depending upon incubation conditions. CH4 production by washed rice roots accounted for at most 10% of the CH4 emitted under anoxic conditions. Initial CH4 oxidation rates of washed roots equaled oxidation rates calculated from the difference between oxic and anoxic fluxes in situ. Oxidation rates became twice as high after an induction period of 20 h, indicating a limitation by O2 or CH4 in situ. The micro-environmental conditions near to the root mat were measured using microelectrodes for O2, redox potential and NH4+ and diffusion probes for CH4. Up to 42 μM O2 was detected in the root mat and concentrations were >2.5 μM in 45% of all measurements. In the bulk soil, no O2 was detected below 2 mm depth, but the root mat significantly increased the redox potential. Plant roots and associated bacteria decreased porewater CH4 and NH4+ concentrations. In the root mat, concentrations of dissolved CH4 were below the detection limit of our probes (<5 μM). Cell numbers of MOB increased with time in the rhizosphere and in the rhizoplane. MOB and aerobic heterotrophic bacteria (AHB) each numbered from 106 to 108 cells g−1 dry weight of soil or root biomass). Active MOB occurred near to a root mat similar to the dense root texture in the upper layer of rice fields. We speculate about O2 or CH4 limitation of MOB.  相似文献   

20.
In the Horqin Sandy Land of eastern Inner Mongolia in northern China, wind erosion in farmland is very common in a period from thawing of frozen surface soil in mid-March to sowing of crops in the end of April, largely because of dry and windy weather. However, little is known about the magnitude of wind erosion and associated nutrient losses due to erosion and the addition of nutrients by airborne dust deposition to farmlands during this period. A field experiment was conducted in an Entisol with sand origin under corn (Zea mays L.) production to investigate daily changes in wind speed and wind erosion intensity (as measured by soil transport rate) over a period from 20 March to 30 April 2001. We also measured daily rates of airborne dust deposition during the spring seasons with the high frequency of dust storm occurrence. The rates of soil transport by wind varied greatly from 13.2 to 1254.1 kg ha−1 per day, averaging 232.1 kg ha−1 per day, largely attributable to great variation between days in wind speed within the study period. The potential losses of nutrients through wind erosion were 0.26–24.95 kg ha−1 per day (averaging 4.62 kg ha−1 per day) in organic matter, 0.02–1.64 kg ha−1 per day (averaging 0.31 kg ha−1 per day) in nitrogen and 0.01–0.7 kg ha−1 per day (averaging 0.13 kg ha−1 per day) in phosphorus. The mean rates of airborne dust deposition ranged from 4.0 to 48.9 kg ha−1 per day, averaging 19.9 kg ha−1 per day, during the spring seasons. The potential addition of organic matter, nitrogen and phosphorus by dust input to the experimental field was, on average, 0.54, 0.04 and 0.02 kg ha−1 per day, respectively. Although the addition was a fraction of the losses due to erosion, nevertheless, dust input in the spring seasons is one of the major suppliers of soil nutrition. The fact that the addition of nutrients by dust is about 1/10 of the losses of soil nutrients through wind erosion suggests that developing and adopting more effective management practices to reduce soil erosion losses and to improve soil fertility are crucial to achieve a sustainable agricultural system in a fragile, semiarid sandy land environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号