首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的]研究斑块中优势种的生活史策略及对养分限制的响应,以及优势种生态化学计量学特征随季节变化的响应规律,为植物种群演替及变化过程研究提供科学依据。[方法]确定3类典型斑块:斑块A(短花针茅)、斑块B(短花针茅+草木樨状黄耆)、斑块C(猪毛蒿+苦豆子+老瓜头),测定优势种的全碳、全氮、全磷含量,计算C∶N, C∶P, N∶P并进行方差分析。采用线性回归分析法对不同斑块C,N,P化学计量进行逐步回归分析。[结果]各斑块优势种的C, N, P及其计量比特征在生长季内的变化规律不同,且各指标季节间的变化特征在不同斑块之间也存在差异;植物C含量在不同优势种和不同斑块间的差异均不显著;短花针茅N含量显著小于其他优势种,导致斑块A的N含量总体显著小于另外两个斑块;植物P含量在斑块A中随着季节的变化表现为增长的趋势,而在斑块C中表现为先减小后增大的变化过程;斑块A植物的C∶N值无显著的季节变化,C∶P和N∶P值在春季显著高于夏秋季;斑块B和斑块C不同优势种的C∶N, C∶P和N∶P值均表现出显著的差异性,但随季节变化过程不同,斑块B除C∶N值外均表现出下降的趋势,而斑块C各比值均表现出先增大后减小的变化规律。[结论] 3种斑块C,N,P含量表现出不同的相关性;斑块A表现为防御性策略,斑块B表现为竞争性策略,而斑块C表现为竞争性和防御性策略共存。  相似文献   

2.
Mulches can improve soil properties, but little is known about nutrient availability in mulched soil that contains plant residues and the effect of mulching with manures. The aim of this study was to determine the effects of mulching with high or low C/N organic materials, in which low C/N materials differed in decomposability, and the presence of wheat straw in the soil on plant growth and N uptake, soil N availability and microbial biomass N within about four months after mulching. Three organic materials were used: mature wheat straw (W, C/N 80), young faba bean shoots (FB, C/N 7), and sheep manure (SM, C/N 8). There were eight treatments differing in amendment methods (mulching or mixing with W or both) and mulching materials (W, FB or SM). Treatments that were only mulched with W, FB or SM are referred to as m‐treatments. In m/s‐treatments, after W was mixed into the soil, W, FB or SM were placed on the soil surface as mulch. Two other treatments included an unamended control and soil mixed with W. Wheat was planted 0, 35 or 70 days after mulching (referred to as 0, 35, and 70 DAM) and grown for 35 days. Faba bean mulch increased shoot dry weight, shoot N uptake and available N compared to wheat or sheep manure mulch, particularly in the m‐treatments. Shoot dry weight was higher in m‐treatments than corresponding m/s‐treatments with the same mulch type. Shoot N uptake was higher in 70 DAM than in 0 DAM in all treatments and 0.3 to three‐fold higher in m‐treatments than the corresponding m/s‐treatments. Microbial biomass N was higher in 0 DAM than in 35 and 70 DAM in most treatments and up to two‐fold higher in m/s‐treatments than the corresponding m‐treatments. Available N in m/s‐treatments was two to six‐fold higher than m‐treatments in 0 DAM, but differed little in older mulch ages of W and SM. It can be concluded that compared to soil with only mulch, mixing of wheat straw into soil reduced plant growth and N uptake, particularly in the early stages of mulching (0 and 35 DAM). However, the presence of wheat in mulched soil may provide a longer lasting source of N for plants and reduce the risk of N leaching from rapidly decomposing low C/N mulch due to greater microbial biomass N uptake than only soil with mulch.  相似文献   

3.
Afforestation is recognized as an important driving force for soil organic C(SOC) dynamics and soil element cycling.To evaluate the relationships between soil C:N:P stoichiometry and SOC fractions,soil C:N:P stoichiometry distributions at 0–200 cm soil depths were analyzed and the contents of SOC fractions were evaluated in 9 typical land-use systems on the Loess Plateau of China.The contents of light fraction organic C,particulate organic C(53,53–2 000,and2 000 μm),labile organic C,microbial biomass C,and dissolved organic C decreased with increasing soil depth and were higher in afforested soil than in slope cropland soil.Compared with the slope cropland,different vegetation types influenced soil C:N,C:P,and N:P ratios,especially when C:P and N:P ratios were significantly higher(P0.05).Moreover,SOC fractions at the 0–10 and 10–40 cm depths were particularly affected by soil C:P ratio,whereas those at the 40–100 and 100–200 cm soil depths were significantly affected(P0.05) by soil N:P ratio.These results indicate that changes in SOC fractions are largely driven by soil C:P and N:P ratios at different soil depths after afforestation.  相似文献   

4.
Xu  Caiyao  Pu  Lijie  Li  Jianguo  Zhu  Ming 《Journal of Soils and Sediments》2019,19(3):1215-1225
Journal of Soils and Sediments - The elements carbon (C), nitrogen (N), and phosphorus (P) in soil are crucial to all biological processes. Reclamation in coastal wetlands would alter the balance...  相似文献   

5.
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil-ization systems on microbial biomass C,N and P of a gray fluvo-aguic soil in rice-based cropping system .Five fertilization treatments were designed under conventional tillae(CT) or on tillage(NT) system:no fertilizer(CK) ; chemical fertilizer only(CF) ; combining chemical fertilizer with pig manure(PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C,N and P were enriched in the surface layer of no-tilled soil,whereas they distributed relatively evenly in the tilled soil,which might result from enrichment of crop resdue,organic manure and mineral fertilzer,and surficial developent of root systems under NT.Under the cultivation system NT had slightly greater biomass C,N and P at 0-5 cm depth ,significantly less biomass C,N and P at 5-15 cm depth ,less microbial biomass C,N and equivalent biomass P at 15-30 cm depth as compared to CT,indicating hat tillage was beneficial for the multiplication of organims in the plowed layer of soil.Under the fallow system,biomass C,N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were neligible in the deeper layers.In the surface layer,biomass C,N and P in the soils amended with oranic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control.Soils without fertilzer had the least biomass nutrient contents among the five fertilization treatments.Obviously,the long-term application of organic manure could maintain the higher activity of microorganisms in soils.The amounts of biomass C,N and P in the fallowed soils varied with the tillage methods;they were much greater under NT than under CT,especially in the surface layer,suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.  相似文献   

6.
黄土高原西部针叶林植物器官与土壤碳氮磷化学计量特征   总被引:2,自引:1,他引:2  
为了系统地比较分析黄土高原西部针叶林植物器官与土壤内碳(C)、氮(N)、磷(P)化学计量变化特征,选取位于黄土高原西部的甘肃省天水市、甘南州、定西市、兰州市和武威市5个地区的针叶林为研究对象,通过对乔木各器官及土壤不同深度的C、N、P元素含量及其化学计量比的分析,探讨了5个调查区针叶林生态系统化学计量特征及其相互间的相关性。结果表明:植物叶的C、N、P含量较其他器官稍高,其中C含量达到511.97~538.66g/kg;5个调查区中武威地区的植物干、枝、根的C含量显著低于其他4个地区,分别为425.0,400.58,400.55g/kg。针叶林干中C∶N在地区间差异达到显著水平(p0.05),其他各器官内差异不显著;甘南和兰州地区的针叶林各器官间C∶N差异显著;针叶林干和根中N∶P在地区之间存在显著性差异,兰州和武威地区各器官间N∶P的差异达到显著性水平。5个调查区土壤C、N、P含量及其计量特征的差异主要存在于上层土壤(0—30cm),而较深层次土壤在各地区之间的差异较小。针叶林干中C、N、P含量两两之间均存在显著相关关系,而在针叶林叶中仅N与P含量之间存在显著相关关系;土壤表层(0—20cm)中C与N含量之间存在极显著的正相关关系。  相似文献   

7.
亚热带丘陵小流域土壤碳氮磷生态计量特征的空间分异性   总被引:3,自引:0,他引:3  
了解土壤碳氮磷生态化学计量特征的空间变异有助于土壤养分管理。以湖南省长沙县金井镇脱甲河小流域(52 km2)为研究区,系统分析了亚热带丘陵小流域表层(0~20 cm)土壤碳氮磷的生态化学计量特征及其空间变异性。该流域土壤有机碳(SOC)、全氮(TN)和全磷(TP)平均含量分别为13.09、1.50和0.51 g kg-1,C∶N、C∶P和N∶P平均值分别为10.42、72.71和7.19,均具有高等变异水平和中等程度的空间自相关性。土壤C∶N、C∶P、N∶P高值区域主要分布在海拔高、人为干扰少和肥料使用少的林地区,而低值区主要分布在海拔较低、人类活动频繁以及化肥施用量大的农田区。菜地、茶园、林地和稻田等不同土地利用方式下,土壤C∶N∶P差异显著;在高海拔和陡坡地区,土壤C∶N∶P均明显偏高。这表明研究区域表层土壤碳氮磷比率的空间分异与土地管理措施和地形有着密切的关系。  相似文献   

8.
The spatial variability of the soil C:N ratio (C:N) influences C and N leaching and basic fertility in the field. This paper aims to identify the spatial heterogeneity of C:N in a Mollisol watershed of Northeast China and determine the main mechanisms that drive these differences. A random sampling method was used, with both geostatistical and traditional analysis being used to describe the spatial distribution of the C:N at various depths. C:N was also compared between slope position, previous vegetation and tillage methods in the watershed. The horizontal distribution of the C:N was mainly influenced by structural factors (88·4–99·9%) and often gradually deceased along the hydrographic flow direction, becoming lowest at the watershed outlet. The C:N increased as soil depth increased at all slope positions, and was higher on the back slope than on summit slope, followed by bottom slope in all soil depths. C:N was negatively (significant at p < 0·01) correlated to TN, and positively (significant at p < 0·05) correlated to elevation at all soil depths. Compared to the reforested area, C:N was typically greater in the agricultural area in the 20–60 cm depth. The planting of soybean (Glycine max L) can significantly increase the C:N at the 40–50 cm depth. C:N was higher in cross‐slope tillage than in down‐slope tillage, especially at soil depths of 40–50 cm. Generally, topographical factors, land use, crop planting and tillage methods can effectively influence the spatial heterogeneity of C:N in this watershed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
针对江西红壤地区不同利用方式引起的土壤质量和肥力的相应变化,研究了不同肥力水平、不同利用方式下红壤旱地水稳性团聚体含量及其养分分布规律。研究表明,荒地土壤中>5 mm水稳性团聚体含量显著高于其他利用方式,花生地和果园土壤则以0.25~0.053 mm的水稳性团聚体为主。各肥力水平下,菜地土壤中除>5 mm水稳性团聚体外,各粒级团聚体中有机碳、全氮和全磷含量均显著高于花生地、果园和荒地土壤。说明菜地土壤长期大量施肥,导致土壤碳、氮、磷养分含量均相对丰富。不同利用方式旱地红壤中,有机碳、全氮主要分布在>5 mm、5~2 mm和2~1 mm的较大粒径水稳性团聚体中。说明随着团聚体粒径增大,其有机碳含量增加,土壤全氮的消长趋势和有机碳一致。土壤全磷较均匀地分布在水稳性团聚体中,如高肥力菜地和荒地土壤各粒级团聚体中全磷含量间均无显著性差异。各利用方式旱地红壤中2~1 mm和1~0.5 mm的水稳性团聚体含量与土壤有机碳、全氮和全磷含量间均达到了极显著正相关。  相似文献   

10.
中国亚热带稻田土壤碳氮含量及矿化动态   总被引:9,自引:0,他引:9  
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China. Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratory incubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cm soil contained 19.6 g kg^-1 organic C and 1.62 g kg^-1 total N, with the corresponding values of 18.1 g kg^-1 and 1.50 g kg^-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation the mineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%, respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organic C and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and then increased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass N increased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm) contained 332.8 mg kg^-1 of microbial biomass C and 23.85 mg kg^-1 of microbial biomass N, which were 111% and 47% higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation in subtropical China would have attained a steady state of organic C content, being about 19 g kg^-1.  相似文献   

11.
Soil microorganisms are influenced by various abiotic and biotic factors at the field plot scale. Little is known, however, about the factors that determine soil microbial community functional diversity at a larger spatial scale. Here we conducted a regional scale study to assess the driving forces governing soil microbial community functional diversity in a temperate steppe of Hulunbeir, Inner Mongolia, northern China. Redundancy analysis and regression analysis were used to examine the relationships between soil microbial community properties and environmental variables. The results showed that the functional diversity of soil microbial communities was correlated with aboveground plant biomass, root biomass, soil water content and soil N: P ratio, suggesting that plant biomass, soil water availability and soil N availability were major determinants of soil microbial community functional diversity. Since plant biomass can indicate resource availability, which is mainly constrained by soil water availability and N availability in temperate steppes, we consider that soil microbial community functional diversity was mainly controlled by resource availability in temperate steppes at a regional scale.  相似文献   

12.
He  Huan  Xia  Guotong  Yang  Wenjin  Zhu  Yunpeng  Wang  Guodong  Shen  Weibo 《Journal of Soils and Sediments》2019,19(12):3954-3968
Purpose

Wetlands in Mu Us Desert have severely been threatened by grasslandification over the past decades. Therefore, we studied the impacts of grasslandification on soil carbon (C):nitrogen (N):phosphorus (P) stoichiometry, soil organic carbon (SOC) stock, and release in wetland-grassland transitional zone in Mu Us Desert.

Materials and methods

From wetland to grassland, the transition zone was divided into five different successional stages according to plant communities and soil water conditions. At every stage, soil physical and chemical properties were determined and C:N:P ratios were calculated. SOC stock and soil respirations were also determined to assess soil carbon storage and release.

Results and discussion

After grasslandification, SOC contents of top soils (0–10 cm) decreased from 100.2 to 31.79 g kg?1 in June and from 103.7 to 32.5 g kg?1 in October; total nitrogen (TN) contents of top soils (0–10 cm) decreased from 3.65 to 1.85 g kg?1 in June and from 6.43 to 3.36 g kg?1 in October; and total phosphorus (TP) contents of top soils (0–10 cm) decreased from 179.4 to 117.4 mg kg?1 in June and from 368.6 to 227.8 mg kg?1 in October. From stages Typha angustifolia wetland (TAW) to Phalaris arundinacea L. (PAL), in the top soil (0–10 cm), C:N ratios decreased from 32.2 to 16.9 in June and from 19.0 to 11.8 in October; C:P ratios decreased from 1519.2 to 580.5 in June and from 19.0 to 11.8 in October; and N:P ratios decreased from 46.9 to 34.8 in June and changed from 34.9 to 34.0 in October. SOC stock decreased and soil respiration increased with grasslandification. The decrease of SOC, TN, and TP contents was attributed to the reduction of aboveground biomass and mineralization of SOM, and the decrease of soil C:N, C:P, and N:P ratios was mainly attributed to the faster decreasing speeds of SOC than TN and TP. The reduction of aboveground biomass and increased SOC release led by enhanced soil respiration were the main reasons of SOC stock decrease.

Conclusions

Grasslandification led to lowers levels of SOC, TN, TP, and soil C:N, C:P, and N:P ratios. Grasslandification also led to higher SOC loss, and increased soil respiration was the main reason. Since it is difficult to restore grassland to original wetland, efficient practices should be conducted to reduce water drainage from wetland to prevent grasslandification.

  相似文献   

13.
In future, prolonged summer drought and heat will constitute a major risk for the cultivation of shallow‐rooting beech in Central Europe and will negatively affect the productivity of beech forests. In a pot experiment under controlled conditions, the influence of long‐term (28 d) water deprivation on nitrogen (N), carbon (C), phosphate (Pi), and ascorbate (ASC) concentrations was examined in leaves and fine roots of beech seedlings (Fagus sylvatica L.) from six provenances originating from Central Europe (Germany: Neidenstein and Illertissen, intermediate habitats), the Balkan peninsula (Croatia: Zagreb and Gospic, wet habitats), and Southeast Europe (Bulgaria: Kotel, Greece: Paikos; dry habitats). The goal of the study was to identify beech provenances well adapted to water limitation during summer drought events. Our results suggest that N might be involved in the alleviation of water scarcity, whereas Pi might become a limiting factor for forest growth during drought periods. Drought stress resulted in significant changes of ASC pools in leaves and fine roots and the ASC redox state. Under well‐watered and under drought conditions, ASC in leaves was the most important factor causing differences between the provenances examined. Finally, a link between P nutrition and the capacity of antioxidative stress defense by ascorbate could be highlighted. Based on observations from this study, beech seedlings from three origins (Paikos, Zagreb, and Neidenstein) might constitute beech provenances well adapted to water shortage in summer. This conclusion is drawn from the high potential of these provenances to alleviate oxidative stress during water shortage.  相似文献   

14.
Dynamics of soil biomass C,N, and P in a dry tropical forest in India   总被引:6,自引:0,他引:6  
Summary Three dry tropical forest soils along a topographic sequence were examined to determine the seasonal dynamics of microbial C, N, and P. The lowest microbial biomass was found in forest soils at the foot of the hill followed by midslope forest soils. The hilltop soil, which had the most fine particles, water-holding capacity, organic C, and total N, reflected the presence of greater amounts of microbial C, N, and P. Mean annual microbial C, N, and P ranges were 466–662, 48–72 to 21–30 g g-1, respectively. The seasonal pattern of microbial biomass, C, N, and P was similar at all sites, the values being greatest during the dry season and lowest during the wet season. The seasonal values for microbial biomass C, N, and P were positively correlated with each other and a negative correlation was found between microbial biomass and the fine root mass in these forest soils.  相似文献   

15.
16.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

17.
Microbial activity and nutrient release are known to be influenced by organic matter properties,but it is difficult to separate the effect of C/N ratio from that of C/P ratio because in most plant residues both ratios are either high or low.An incubation experimeut was conducted to investigate the effects of reducing the C/N and C/P ratios of slowly decomposable plant residues (young eucalyptus leaves,mature wheat straw,and sawdust) to those of rapidly decomposable residues (young kikuyu shoots) on soil respiration,microbial biomass,and N and P availability.The C/N and C/P ratios of the former were adjusted to 15 and 89,respectively,by adding N as (NH4)2SO4,P as KH2PO4 or both and residues were added at 10 g C kg-1 to a silt loam.Soil respiration was measured over 21 d;microbial biomass C (MBC) and available N and P were measured on days 0,7,and 21.Compared to the unamended soil,addition of kikuyu increased cumulative respiration 20-fold,MBC concentration 4 to 8-fold,and available P concentration up to 4-fold,whereas the increase in available N concentration was small and transient.Cumulative respiration and MBC concentration were low in the sawdust-amended soil and were not influenced by reducing the C/N and C/P ratios.Cumulative respiration with original wheat and eucalyptus was 30%-40% of that with kikuyu.Reducing the C/N ratio alone or both C/N and C/P ratios increased cumulative respiration and MBC concentration 2-fold compared to the original wheat and eucalyptus,whereas reducing the C/P ratio had little effect.Throughout the experiment,the available N concentration after addition of residues with reduced C/N ratio increased in the following order of eucalyptus < wheat < sawdust.By independently lowering the C/N and C/P ratios,microbial activity was more limited by C and N than P.However,lowering the C/N ratio of very slowly decomposable sawdust had no effect on soil respiration and MBC concentration,suggesting that other properties such as concentration of poorly decomposable C compounds limited decomposition.  相似文献   

18.
Cao  Yang  Zhang  Ping  Chen  Yunming 《Journal of Soils and Sediments》2018,18(4):1478-1489
Journal of Soils and Sediments - Soil nutrient concentrations and stoichiometry are important indicators of plant growth, terrestrial productivity, and ecosystem functioning. Nevertheless, little...  相似文献   

19.
Ryegrass was grown under conditions of low N, low P, or high N and P nutrient supply in an atmosphere containing 14CO2 and then incubated in soil supplemented with or without N or P fertilizer. Determined in fresh plant tissue, the persistency of residual labelled C after 6 months was in the order low-N plants>low-P plants>high-N and-P plants. The addition of N conserved C, particularly when there was additional P present. Hydrolysable labelled C (12M/0.5M H2SO4) showed similar trends. In analyses of freeze-dried plant tissue, the main effect was also the increased persistency of C from low-N plants compared to high-N plants. The addition of N fertilizer increased the persistence of plant residue C, but only with grass containing low P. The addition of P fertilizer had no effect. In freeze-dried low-P plant tissue, sampled after 1.5, 6, and 12 months, the conserving effect of adding fertilizer N was confirmed. The addition of P, in contrast, enhanced the rate of decomposition. After 6 months, about a third of the C remained, and after 12 months, about one-quarter. It is concluded that P, whether intrinsic or added, can increase the rate of decomposition of organic residues in soil, but there is a strong interaction with N, which has a predominant influence. The effects of N depend on the form it is in. Increased intrinsic tissue N can increase the rate of C loss, whereas added inorganic N can decrease the rate of C loss during decomposition.  相似文献   

20.
为阐明不同水氮管理模式对黑土稻作产量和土壤碳氮磷化学计量特征的影响。设置3种灌溉模式(常规淹灌、浅湿灌溉、控制灌溉)和4种氮肥梯度(0、85、110、135 kg/hm2),探究水稻产量、土壤碳氮磷含量、化学计量比及层化率对不同水氮管理模式的响应规律。结果表明:控制灌溉模式下,水稻通过形成足量大穗提高库容,小幅增加结实率,从而显著提高产量(p<0.05)。稻田土壤有机碳(SOC)、土壤总氮(STN)、土壤总磷 (STP) 含量随土层深度增加而降低,施氮处理可显著提升SOC、STN含量并降低STP含量(p<0.05)。常规淹灌模式增加SOC、STN含量,控制灌溉模式增加STP含量。土壤C/N随施氮量增加而降低,土壤C/P、N/P随施氮量增加而升高,施氮能提升不同土层平均C/N层化率,降低C/P、N/P层化率。相比常规淹灌,控制灌溉模式能提升不同土层SOC、STP含量层化率,在一定程度上说明控制灌溉配施适宜氮肥可以改善土壤质量,综合考虑CN2为最优水氮管理方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号